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A Additional Lemmas

In our analysis in Section 4, we need the following two lemmas to facilitate the estimation of the
actual demand distribution using the empirical distribution and the number of arrivals of each online
item type. The second lemma is just a corollary of Chernoff bound.

Lemma A.1 (Estimation of Distribution, [Dvoretzky et al., 1956]). Suppose X1, . . . , Xt are indepen-
dent and identically distributed random variables with cumulative distribution function F (·). Denote
Ft as the associated empirical distribution, where Ft(x) = 1

t

∑t
i=1 1{Xi≤x}, for all real number x.

Here, 1{Xi≤x} is the indicator function which takes value 1 if Xi ≤ x, otherwise 0. For any ε > 0,
Pr[supx∈R |Ft(x)− F (x)| > ε] ≤ 2e−2tε

2

.

Lemma A.2 (Number of Samples, [Mitzenmacher and Upfal, 2017]). Suppose X1, . . . , Xt are
independent and identically distributed random variables taking values in {0, 1}. Denote X as their
sum and µ as the expected value of the sum. Then, Pr[X ≥ 1

2µ] ≥ 1− e−
µ
8 .

B Missing Proofs in Section 2

B.1 Proof of Lemma 2.1

Proof. Since Theorem 1 in Alaei et al. [2013] is a generalized version of the model we consider
in this LP, where we only allow the i.i.d. arrival distributions and the demand distributions of
one fixed type for different online arrivals are the same. It suffices to show we can build one
solution with the same objective value in our LP as that in the LP (OPT ) mentioned in Theorem
1 in Alaei et al. [2013]. We assume the solution of LP OPT is {x∗t,v,u}, where t ∈ [T ], v ∈ V
and u ∈ U . Here, we modify their notations correspondingly based on our notations. From
their first constraints

∑
t∈[T ]

∑
v∈V s̃t,v,ux

∗
t,v,u ≤ cu for each u ∈ U , under our model, we have∑

v∈V dv(
∑
t∈[T ] x

∗
t,v,u) ≤ cu because all s̃t,v,us in their model are exactly dv in our model.

For their second constraints
∑
u∈U x

∗
t,v,u ≤ pt,v for each t ∈ [T ] and v ∈ V , under our model, we

can sum up for all t ∈ [T ] and get
∑
u∈U (

∑
t∈[T ] x

∗
t,v,u) ≤ pvT for each v ∈ V . This is from the

assumption of i.i.d. arrivals.

Thus, if we choose xu,v in our model as
∑
t∈[T ] x

∗
t,v,u, we find this satisfies all our constraints,

and the objective
∑
u∈U,v∈V ru,vxu,v =

∑
u∈U,v∈V,t∈[T ] ru,vx

∗
t,v,u, where the latter is the same

objective in their LP by modifying the notations. This finishes the proof.
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C Missing Proofs in Section 3

C.1 Proof of Theorem 3.4

Before we start our proof, we first simplify some notations based on Bernoulli distributions. Specif-
ically, we assume 0 appears with the probability p and p̃ in the demand distributions D and D̃
respectively. We have p ≥ p̃ based on the definitions.

Proof. We first prove that FW̃t
(x) ≤ FWt(x) for all x and t ∈ [T ]. From the Bernoulli distribution,

we only consider the integer x without loss of generality. We prove this by induction. For t =
1, this is satisfied since both W̃1 and Wt can take the value 0. For t + 1, if x < θt, we have
FW̃t+1

(x) = FW̃t
(x− 1) + (FW̃t

(x)− FW̃t
(x− 1))p̃ ≤ FW̃t

(x− 1) + (FW̃t
(x)− FW̃t

(x− 1))p

and FWt+1(x) = FWt(x− 1) + (FWt(x)−FWt(x− 1))p, from the modified γ-magician procedure.
Since FW̃t

(x − 1) ≤ FWt(x − 1) and FW̃t
(x) ≤ FWt(x) and p ∈ [0, 1], we can conclude that

FW̃t+1
(x) ≤ FWt+1

(x).

If x = θt, by the procedure, we have FW̃t+1
(x) = FW̃t

(x − 1) + (FW̃t
(x) − FW̃t

(x − 1))(p̃rt +

(1− rt)) ≤ FW̃t
(x− 1) + (FW̃t

(x)−FW̃t
(x− 1))(prt + (1− rt)) and FWt+1

(x) = FWt
(x− 1) +

(FWt
(x)− FWt

(x− 1))(prt + (1− rt)). Since prt + (1− rt) ∈ [0, 1], with the same analysis, we
can also get FW̃t+1

(x) ≤ FWt+1
(x).

For the last case where x > θt, from the monotonicity of the choice of θt, we directly have
FW̃t+1

(x) = 1 = FWt+1(x).

We then can check whether Pr[Ĩt] ≤ Pr[It] holds for all t ∈ [T ], which finishes the proof according
to Claim 3.3. Under the condition that γ ≤ 1 − 1√

k+3
, from Claim 3.2 and Claim 3.3, we have

Pr[Ĩt] = γ = Pr[W̃t < θt] + rtPr[W̃t = θt] = FW̃t
(θt − 1) + rt(FW̃t

(θt) − FW̃t
(θt − 1)) and

Pr[It] = FWt(θt − 1) + rt(FWt(θt) − FWt(θt − 1)). From the same analysis, we get Pr[It] ≥
Pr[Ĩt] = γ holds for all t ∈ [T ].

D Missing Proofs in Section 4

D.1 Proof of Lemma 4.1

Proof. From Lemma A.2, for each type v, we can treat each random variable Xi taking value 1 with
a probability of pv, where i ∈ [T0]. We have the number of arrivals of items of type v is at least
T0pv
2 ≥ αN

2 with a probability of at least 1− e−
T0pv

8 . By union bound, we have: with a probability

of at least 1−
∑
v∈V e

−T0pv8 ≥ 1−me−αN8 , the number of arrivals of items of each type is at least
αN
2 .

D.2 Proof of Lemma 4.2

Proof. Conditioning on E where the number of arrivals of items of each type in the sampling phase
is at least αN2 , from Lemma 2.2, for a fixed v ∈ V and a δ > 0, considering each Xi is the random
variable corresponding to the realized demand of one arrival of type v during the sampling phase,
we have d̄v ≤ (1 + δ)dv with a probability of at least 1− e−2δ2d2v αN2 ≥ 1− e−δ2d2(αN). Since we
get d̃v from the sum of ε and d̄v, we have d̃v ≤ (1 + δ)dv + ε ≤ (1 + δ + ε/d)dv with probability
1− e−δ2d2(αN). By union bound over all v ∈ V , we finish our proof.

D.3 Proof of Lemma 4.3

Proof. Conditioning on E where the number of arrivals of items of each type in the sampling
phase is at least αN2 , from Lemma A.1, for a fixed v ∈ V , we treat each Xi as the corresponding
random variable of the realized demand of each arrival of type v in the sampling phase, and we
have |F̄v(x) − Fv(x)| ≤ ε holds for all x with a probability of 1 − 2e−2

αN
2 ε2 = 1 − 2e−ε

2(αN).
Here, we denote F̄v(x) as the empirical distribution calculated at Step 15 of our algorithm. From
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the modification of F̄v(x) at Step 16 of our algorithm, we have F̃v(x) ≤ Fv(x) holds for all x with
probability 1− 2e−ε

2(αN). By union bound, we get the conclusion.

D.4 Proof of Lemma 4.4

Proof. We assume the optimal solution of LP (d, T ) is {x∗uv}, where d represents the expected
values of actual demand distributions and T is the total horizon. From Lemma 2.1, we have∑

u∈U,v∈V ruvx
∗
uv ≥ OPT, so it suffices to show { 1−α

1+δ+ε/dx
∗
uv} is a solution of LP (d̃, T ′).

For Constraints (1a), for each v ∈ V ,
∑
u∈U

1−α
1+δ+ε/dx

∗
uv ≤ (1 − α)

∑
u∈U x

∗
uv ≤ pv(1 − α)T =

pvT
′. The first inequality is from 1 + δ+ ε/d ≥ 1 and the second inequality is from the corresponding

Constraint (1a) of LP (d, T ).

For Constraints (1b), for each u ∈ U ,
∑
v∈V d̃v

1−α
1+δ+ε/dx

∗
uv ≤ (1− α)

∑
v∈V dvx

∗
uv ≤ cu. The first

inequality is from Lemma 4.2 while the second inequality is from the corresponding Constraint (1b)
of LP (d, T ) and the fact that 1− α ≤ 1.

D.5 Proof of Lemma 4.5

To prove this lemma, we need to verify that the two conditions defined in the modified GMP are
satisfied. By utilizing the matching probability specified in Step 24 and the definition of FD̃, we
can verify the first condition FD̃(x) ≤ FD(x) according to Lemma 4.3. After proving that d̃v is an
upper bound of the expectation of the distribution whose CDF is F̃v, we can also verify the second
assumption T · E[X] ≤ k according to the definition of D̃ and Constraint (1b).

Proof. We first check the condition FD̃(x) ≤ FD(x) for each bin u ∈ U . We fix the bin u. From
Step 19 of our algorithm, we have FD̃(x) = (1−

∑
v∈V

x̃uv
T ′ ) +

∑
v∈V

x̃uv
T ′ F̃v(x) for each x ∈ [0, 1].

We then consider the calculation of FD. From Step 24 of our algorithm, for each x ∈ [0, 1], we have
FD(x) = (1 −

∑
v∈V pv

x̃uv
pvT ′ ) +

∑
v∈V pv

x̃uv
pvT ′Fv(x). The first term corresponds to the case that

this bin u is not chosen and the second term corresponds to the case that the arriving item is of type v
and chooses the bin u. Then, by simplification and Lemma 4.3, we get FD̃(x) ≤ FD(x) for bin u.

We then check the second condition that T · E[X] ≤ k. From the definition of the modified GMP,
X follows D̃, the T in the definition is the T ′ here, and k is cu for the GMP of each bin u. By
Steps 10 and 15 of our algorithm, for each v ∈ V , we have d̄v = E[Xv], where Xv follows
the empirical CDF distribution Fv. Since Fv takes value in [0, 1], after the modification at Step
16 of our algorithm, the expected value can increase at most (1 − 0) · ε. With the definition of
d̃v at Step 11, we have d̃v ≥ E[X̃v], where X̃v follows the CDF F̃v(x) defined at Step 16. We
now fix a bin u. We then use the definition of the CDF distribution FD̃ at Step 19, then we have
T ′ · E[X] = T ′

∑
v∈V

x̃uv
T ′ E[X̃v] ≤ T ′

∑
v∈V

x̃uv
T ′ d̃v ≤ cu. The first equation is from the definition

at Step 19 and the last inequality is from Constraint (1b) of LP (d̃, T ′).

D.6 Proof of Theorem 4.6

Proof. From Lemmas 4.1, 4.2, 4.3, and 4.5, by union bound, we have: with a probability of at least
1−me−αN8 −me−δ2d2(αN) − 2me−ε

2(αN), the corresponding problem of each bin u can reduce to
a modified GMP problem. If all demand distributions are Bernoulli distributions, by the definitions
of D̃ and D, we get these two distributions are also Bernoulli. From Theorem 3.4, we can achieve a
competitive ratio of 1− 1√

cu+3
≥ 1− 1√

k+3
when choosing γ = 1− 1√

cu+3
for each bin u, compared

to the benchmark OPT′ of LP (d̃, T ′).

With Lemma 4.4, we get the exact competitive ratio is 1−α
1+δ+ε/d (1− 1√

k+3
).
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E Details in Section 5

E.1 Demand Distributions

Let X denote the random variable that follows a demand distribution D.
(1) D is a Bernoulli distribution B(q). Pr[X = 1] = q and Pr[X = 0] = 1− q. For each online item
type, we generate q from a uniform distribution U [0, 1].

(2) D is a uniform distribution U [a, b]. For each online item type, we generate a and b from a uniform
distribution U [0, 1]. The smaller one is used as a, and the bigger one is b.

(3) D is a truncated normal distribution T (a, b, µ, σ2). For each online item type, the truncated
interval [a, b] is always equal to [0, 1]. We generate µ from a uniform distribution U [0, 1], and σ from
a uniform distribution U [0, 0.5].

E.2 Supplementary Results

Main results have been discussed in the main paper. In this section, we provide some supplementary
experiment results that are omitted in the main paper.

Reward curves We show the average reward of our tested algorithms in Figure E.1 and E.2. In
Figure E.1, we fix the initial capacity of each offline bin k = 10, and vary the number of online arrivals
T from 500 to 1000. We can see the GRD is little affected by T , and our heuristics get more rewards
when T goes larger. In Figure E.2, we fix T = 500 and test for different k = 2, 3, · · · , 10. We can
see that larger k will make all tested algorithms better-performing because the capacity becomes
larger, then each bin can serve more items. The gap between every heuristic and GRD becomes larger
when k is larger, especially GAP0.5 and GAP* .
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(c) Truncated normal distribution

Figure E.1: k = 10, T = 500, 600, · · · , 1000.
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(c) Truncated normal distribution

Figure E.2: T = 500, k = 2, 3, · · · , 10.

Different ε’s We test the effect of error parameter ε for different (k, T ) pairs: (k = 5, T = 500),
(k = 5, T = 1000), (k = 10, T = 500) and (k = 10, T = 1000). The results are showed in
Figure E.3. We can see that for different ε’s, the average rewards do not change a lot even under
different (k, T )’s and different distributions. When fixing the type of distribution, the shapes of the
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reward curves of different (k, T )’s are similar, and the best ε∗ choice is the same. The best ε∗’s are
different for different distributions, i.e., 0.35 for Bernoulli and 0.10 for truncated normal distribution.
We use ε = 0 in our main paper because (1) the best ε∗ for different distributions do not exist; (2)
though ε = 0 is not the best among all choices, the performance of ε = 0 is good enough.
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(a) Bernoulli distribution
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Figure E.3: ε = 0, 0.05, 0.10, · · · , 0.50.

Runtime We summarize the runtime of our experiments in Table 1. This table records the average
runtime for a single realization of each instance. We can see that the runtime of different heuristics
with different distributions are very close and still acceptable compared to that of GRD .

Table 1: Runtime of different algorithms with different distributions
Runtime (seconds)

Algorithm Bernoulli Uniform Truncated normal

GRD 0.0016 0.0019 0.0016
GAP* 4.2172 4.0496 3.9455

GAP0.5 4.2409 3.9591 3.8964
GAP0.8 4.2390 4.0444 3.9321
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