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We study an edge-weighted online stochastic Generalized Assignment Problem with unknown Poisson

arrivals. In this model, we consider a bipartite graph that contains offline bins and online items, where each

offline bin is associated with a D-dimensional capacity vector and each online item is with a D-dimensional

demand vector which may be different towards each bin. Online arrivals are sampled from a set of online

item types which follow independent but not necessarily identical Poisson processes. The arrival rate for

each Poisson process is unknown. Each online item will either be packed into an offline bin which will deduct

the allocated bin’s capacity vector and generate a reward, or be rejected. The decision should be made

immediately and irrevocably upon its arrival. Our goal is to maximize the total reward of the allocation

without violating the capacity constraints. We provide a sample-based multi-phase algorithm by utilizing

both pre-existing offline data (named historical data) and sequentially revealed online data. The developed

algorithm employs the concept of exploration-exploitation to dynamically learn the arrival rate and optimize

the allocation decision. We establish its parametric performance guarantee measured by a competitive ratio.

We further provide a guideline on fine tuning the parameters under different sizes of historical data based on

the established parametric form. By analyzing a special case which is a classical online weighted matching

problem, we also provide a novel insight on how the historical data’s quantity and quality (measured by

the number of underrepresented agents in the data) affect the trade-off between exploration and exploita-

tion in online algorithms and their performance. Finally, we demonstrate the effectiveness of our algorithms

numerically.
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1. Introduction

Online Generalized Assignment Problem (GAP) is a fundamental research topic in resource

allocation, which has been widely studied in various areas including operations research

and computer science (Alaei et al. 2013, Naori and Raz 2019, Albers et al. 2020, Jiang et al.
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2021). In this problem, we are given a set of offline bins with general capacities. During

the online process, online items arrive in the system sequentially and request a certain

bin capacity, name demand. Capacity and demand are in multi-dimensions and they can

be different for different resources and requests. We need to pack the item into an offline

bin with enough remaining capacity immediately and irrevocably upon its arrival or reject

the item. If an item is packed into a bin, it consumes the bin’s capacity by its demand

and generates a reward. Our goal is to maximize the total reward of the output packing

scheme.

This model has wide applications in various domains. Examples include online task

assignment, ridesharing, and cloud computing.

Online task assignment. In some online task assignment platforms such as Amazon,

the platform has several tasks to be allocated to a sequence of online arriving workers.

Each task can be regarded as an offline bin and contains several processes. Each worker is

regarded as an item with a single demand. Each worker arrives at the platform sequentially

and takes one process in a task upon its arrival. A successful match of a worker to a task

generates a reward that depends on the quality of the task completed by this worker.

Ridesharing. In a ridesharing platform such as Uber, each car can be regarded as a

bin whose capacity is the number of guest seats in the car. Each ride request arrives at

the platform in an online manner and requests some seats from a car nearby. A car can

take multiple ride requests if the capacity permits. A successful match between a ride

request and a car will generate a certain reward that depends on the car’s location and

the passenger’s destination.

Cloud computing. In some commercial cloud computing services such as Azure and

Google Cloud, multiple servers with different configurations are provided to agents. Agents

arrive sequentially and request a certain amount of computing resources such as CPU and

memory from a server. Allocating different servers to an agent may lead to different rewards

depending on the servers’ configurations. The services provider’s goal is to maximize the

total reward.

The general framework of the problem lends itself to a wide range of applications, but

it also poses challenges when it comes to devising an efficient algorithm. Aggarwal et al.

(2011) demonstrated that no online algorithm can achieve a positive competitive ratio

if the order of arrivals is determined by an adversary. However, if we assume that the
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arrivals follow a random order model, where the arriving order of online items is uniformly

chosen from all possible permutations, Albers et al. (2020) presented an online algorithm

for the single-dimensional GAP that achieves a competitive ratio of 1
6.99

. However, there

is a scarcity of literature on the multi-dimensional GAP. To the best of our knowledge,

Naori and Raz (2019) is the first one to provide an algorithm with a competitive ratio that

depends on the dimensions under the random order arrival model. But there is no existing

literature on the multi-dimensional GAP under a stochastic arrival model.

Poisson arrival is a widely-used stochastic arrival model. It has been extensively exam-

ined in various online problems (see Gamarnik and Squillante (2005), Jiang et al. (2021),

Yan (2022)). In a typical Poisson arrival model, each online arrival of type v ∈ V follows a

Poisson process with a known arrival rate λv. The arrival processes of different types are

assumed to be independent. However, in many real-world scenarios, specific information

regarding the arrival rates is often unavailable. In other words, the Poisson arrival rate for

each type is unknown.

In this paper, we study an online stochastic multidimensional generalized assignment

(GAP) problem in the context of an unknown Poisson arrival model. This study marks the

initial endeavor to explore the online GAP in an unknown Poisson arrival setting. To tackle

this problem, we leverage both the pre-existing offline data, referred to as historical data,

and the sequentially-revealed online data, and develop an efficient multi-phase algorithm.

Specifically, the algorithm includes a sampling phase to reject all arrivals and only collect

arrival data, as well as several exploitation phases to allocate resources to online arrivals.

The developed algorithm employs the concept of exploration-exploitation to dynamically

learn the arrival rate and optimize the allocation decision. Through a thorough analysis

of the algorithm’s performance, we examine the effect of the historical data size on its

effectiveness. We first prove that even in the absence of historical data, our algorithm can

generate a better ratio than that achieved by Naori and Raz (2019), the sole existing liter-

ature on online multidimensional GAP. Second, we provide a guideline for fine tuning the

parameters when different sizes of historical data are available. Specifically, we introduce

two heuristic algorithms derived from our main algorithm by selectively skipping certain

phases. These heuristic algorithms are accompanied by established performance guaran-

tees with fined tuned parameters. Furthermore, we conduct a thorough analysis of their

performance across different levels of data availability. Finally, by restricting the models
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to a special case where the dimension D= 1 and both the capacity of offline bins and the

demand of online items are set to 1, the problem reduces to a classical online weighted

matching problem. By analyzing the competitive ratio for this online matching problem,

we provide a novel insight on how the historical data’s quantity and quality (measured by

the number of underrepresented agents in the data) affect the trade-off between exploration

and exploitation in online algorithms and their performance.

1.1. Related Work

Extensive research has been conducted on the online generalized assignment problem, along

with its various simplified versions like online bin packing and online knapsack problems,

as evidenced by several studies in the literature (Alaei et al. 2013, Naori and Raz 2019,

Albers et al. 2020, Jiang et al. 2021).

A significant portion of the literature has primarily focused on single-dimensional GAP.

Albers et al. (2020) proposed a randomized algorithm that achieves a competitive ratio

of 1
6.99

when considering the random order model. In a special case where there is only

one offline bin, their algorithm can achieve a competitive ratio of 1
6.65

for the online knap-

sack problem. Jiang et al. (2021) studied the case where the arrivals are drawn from some

independent (but not identical) distributions over item types, and proposed a reduction

technique that reduces the single-dimensional GAP to a sequence of online knapsack prob-

lems. The developed algorithm achieves a performance guarantee of 1
3+e2
≈ 0.319 in both

single-dimensional GAP and online knapsack problem. Alaei et al. (2013) studied a ran-

dom demand model, i.e., the demand of each online item is also a random variable. They

assume the demand realization can only be observed after the bin packing decision has

been made. Assuming that the demand of each item does not exceed a fraction of 1
k

of any

bin’s capacity, and given advance knowledge of the distribution information for all poten-

tial arrivals, they presented an algorithm. This algorithm achieves a competitive ratio of

1− 1√
k

when items follow a stochastic arrival model.

If we further restrict the setting to the special case where both the demand and capac-

ity are unitary under the dimension D = 1, the problem simplifies to an online bipartite

matching problem. Extensive research has been conducted on the online bipartite matching

problem in the literature. Karp et al. (1990) started this stream of works and considered

maximizing the total number of matches under the worst-case model. They presented an
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algorithm with a tight competitive ratio of 1− 1
e
. Many follow-ups further study maximiz-

ing the vertex-weighted or edge-weighted matching under a random order arrival model or

a stochastic arrival model (Feldman et al. 2009, Aggarwal et al. 2011, Kesselheim et al.

2013, Huang and Shu 2021, Huang et al. 2022, Yan 2022, Feng et al. 2023). In particular,

for maximizing the edge-weighted matching under the stochastic arrival model, Feldman

et al. (2009) proposed a linear-program-based Suggest Matching algorithm and showed

that this algorithm can achieve a competitive ratio of 1− 1
e
. Their algorithm provides some

intuitions for us in our algorithm design. Recently, Huang et al. (2022) proposed a state-

of-the-art algorithm under the vertex-weighted setting which achieves a competitive ratio

of 0.716 and Feng et al. (2023) proposed an algorithm with a competitive ratio of 0.650

under the edge-weighted setting when all arrivals follow a stochastic arrival process. Under

the random order model, Kesselheim et al. (2013) presented an algorithm that achieves a

competitive ratio of 1
e
, and Mehta (2013) showed the tightness of this bound.

However, there has been limited literature on the multi-dimensional GAP. Naori and Raz

(2019) is a seminar work. It is also most related to our paper. They studied a random order

model and proved that there exists a O(D)-competitive algorithms in the D-dimensional

GAP, i.e., the competitive ratio of their algorithm is in the order of 1
D

. They also proved

that the bound is tight in the order. In contrast, our research focuses on investigating

the multi-dimensional generalized assignment problem (GAP) within a stochastic arrival

model. More specifically, we assume the arrival model follows a Poisson arrival process

with an unknown rate. Our algorithm incorporates certain concepts from their paper while

utilizing both the existing offline data, known as historical data, and the sequentially

revealed online data to estimate the arrival rate. We demonstrate that our algorithm

achieves a superior ratio compared to theirs, even in the absence of any historical data,

i.e., no prior knowledge of the arrival rate.

Recently, it has been an increasing trend to make use of historical data to aid in design-

ing online algorithms (Azar et al. 2014, Correa et al. 2019, Kaplan et al. 2021, Zhang et al.

2022, Gorlezaei et al. 2022). Zhang et al. (2022) is the most related to ours. In their paper,

they studied a maximum edge-weighted matching under the random order model, which is

a restricted model of our online GAP setting. They leveraged the historical data in design-

ing their matching algorithm and established the performance guarantee as a function of
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the size of historical data. Inspired by their algorithm, we develop our multi-phase algo-

rithm in solving our multidimensional GAP problem. But note that we consider a Poisson

arrival model while their work studied a random order model, and the multidimensional

GAP model we study is more general than their online matching model. These differences

necessitate a distinct and intricate analysis of the performance guarantee. In a concurrent

study by Liu et al. (2023), historical data utilization is also explored within the context

of the multidimensional GAP. They assume a random order model for the arrival pro-

cess. To establish a performance guarantee for their algorithm, they make two additional

assumptions: (1) dimension D = 1, (2) the ratio between the capacity of the offline bin

and the demand of the online item is upper bounded by a constant. These assumptions

impose more constraints on the problem setting compared to ours. In contrast, our research

considers a general multi-dimensional GAP and adopts a Poisson arrival model with an

unknown rate. This distinction significantly impacts both the algorithm design and the

analysis, presenting unique challenges in our study.

2. Preliminaries

Let [k] denote {1, . . . , k}. We consider an online stochastic generalized assignment problem

(GAP) as follows. We need to pack some online arriving items into some offline bins over

a planning horizon of T periods. We use U to denote the set of bins. Each bin u∈U is of

D dimensions and has a capacity Cu = (C1
u, . . . ,C

D
u ) ∈ RD

≥0. We use V to denote a set of

item types, whose demand is of D dimensions. Packing an item whose type is v ∈ V into

a bin u ∈ U consumes a capacity denoted by ruv = (r1
uv, . . . , r

D
uv) ∈ RD

≥0. We assume there

are m item types in V . Packing an item of the type v ∈ V into a bin u ∈ U generates a

non-negative reward of wuv. Without loss of generality, we assume each item can be packed

into any bin. If a pair of item and bin is incompatible, we can simply set its rewards wuv to

0. Our goal is to maximize the total reward of the packing without violating the capacity

constraints of all bins. We formulate this GAP problem in mathematical form as follows,

max
∑

u∈U,v∈V

wuvxuv (1)

s.t.
∑
u∈U

xuv ≤ nv, ∀v ∈ V, (1a)∑
v∈V

rduvxuv ≤Cd
u, ∀u∈U,d∈ [D], (1b)

xuv ∈ {0,1, . . . , nv}, ∀u∈U,v ∈ V, (1c)
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where nv denotes the number of online arriving items of type v and xuv is the allocation

decision, which represents the number of items of type v packed into the bin u.

We now define our online process. We are given a planning horizon of T and we assume

T is large, which is a standard assumption in the online resource allocation literature

(see Feldman et al. (2009), Huang and Shu (2021), Manshadi et al. (2012), Jaillet and

Lu (2014)). We assume the online arrivals follow a type-specific Poisson process, i.e., the

arrival rate of each item type v denoted by λv depends on its type. But λv > 0 is unknown

for all v ∈ V . We assume each type’s arrival process is independent from each other. Upon

the arrival of one item, we need to make an immediate and irrevocable decision: pack it

into one bin with enough space and generate a reward, or reject it.

Historical data. In this paper, we assume that the decision maker has some pre-existing

offline data before the online process. We name them historical data in the subsequent

presentation. We assume the historical data are generated from the same arrival model as

in our online process in a time horizon of h · T . In other words, the parameter h ∈ [0,1]

measures the size of the historical data. The average number of each item type v in the

historical data is hTλv. The main focus of this paper is to scrutinize the performance of

the proposed algorithm within a limited data setting. Consequently, we confine our consid-

erations to the assumption h≤ 1. However, it’s important to note that our algorithm and

analysis can be extended to scenarios where h> 1, albeit with a more intricate competitive

ratio.

Competitive ratio. We measure the performance of online algorithms by a competitive

ratio. We define ALG(I) as the expected reward of the packing output by an online algo-

rithm ALG on an instance I of our problem. The expectation is taken over random arrivals

of online items during both the historical and online planning horizons and the random-

ized (if needed) algorithm. We then compare its performance with a clairvoyant optimal

algorithm OPT, which holds the information of all the subsequent arrivals, i.e., each online

arrival’s type and its arriving time. We can similarly define OPT(I) as the expected reward

of the packing output by OPT on I. For simplicity of the notion, we will call OPT(I) the

offline optimal and drop I when there is no ambiguity, in the following analysis. Then the

competitive ratio of ALG is defined as the minimum ratio of ALG(I) over OPT(I) among

all instances I of our problem.
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2.1. Important Lemmas

We next present two lemmas that are important in analyzing the performance of our algo-

rithms. Due to page limit, we defer all the technical proofs in this paper to the appendix.

Lemma 1 (Number of Samples). For a Poisson arrival process with an arrival rate

λ > 0 during the time horizon of T , and denote N = λ · T , we have that with probability

1− e−N8 , the number of arrivals n is at least

n≥ 1

2
N.

Lemma 2 (Arrival Rate Estimation). For a Poisson arrival process with an

unknown arrival rate λ> 0 that begins at time t= 0, if we observe n points arriving at time

t1, t2, . . . , tn, we can estimate the arrival rate λ̂ = tn
n

, and for 0 < δ < 1, with probability

1− δ that

(1−∆) · λ̂≤ λ≤ (1 + ∆) · λ̂

where ∆ =

√
4 ln 1

δ

n
.

3. Online Multidimensional GAP

In this section, we consider the online multidimensional GAP model. Inspired by Naori

and Raz (2019), we categorize the edges connecting offline bins and online items into two

types: heavy edges and light edges, according to the demand vector of the online items, and

design a multi-phase algorithm (see Algorithm 1). Specifically, we define an edge (u, v) as a

light edge if rduv ≤ 1
2
Cd
u holds for all d∈ [D], otherwise, the edge is a heavy edge. Intuitively,

for a heavy edge (u, v), we cannot pack more than one item of type v into the bin u. We

use EH and EL to represent the set containing heavy edges and light edges, respectively.

We first reserve some periods in the beginning of the planning horizon as the sampling

phase to collect arrival data. In other words, we simply reject all arrivals in the sampling

phase to collect data to estimate the arrival rates. After that, we start our exploitation

phases. In order to prevent lighter items from obstructing the packing of heavier items, we

first deal with heavy edges to reach a better utilization of resources. Moreover, we apply a

hybrid of a deterministic matching algorithm and an LP-based randomization algorithm to

handle each type of edge. This hybrid approach enables efficient exploration of the solution

space while minimizing the risk of getting trapped in local optima. This combination of
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deterministic and randomization algorithms allows us to strike a balance between efficient

allocation search and adaptability to uncertain arrivals.

Remark: The algorithms exhibits a trade-off of the exploration (collecting data to learn

arrival rate) and exploitation (allocate resources to maximize expected reward). A lengthier

sampling period (larger α) intensifies the emphasis on exploration. This algorithm shares

parallels with strategies used for solving multi-arm bandit (MAB) problems. However, it

is crucial to assert that MAB algorithms are not directly transferrable to our scenario

for the following reasons. First, our problem involves limited capacity for each resource,

corresponding to options in MAB. This restricts the number of times each option can

be chosen. Conversely, MAB permits unlimited plays for each option. Second, our goal is

to comprehend the stochastic arrival process, unlike MAB where the focus is on random

rewards. Lastly, our problem selects resources (options) based on rewards, while MAB

plays options before knowing the reward.

We next explain our exposition phases in detail. In the second phase, we match heavy

edges according to the optimal solution to a linear program LPH(λ̂, T ′) which is defined in

(2), i.e., the resource u is matched to the request v with the probability that is proportional

to x∗uv/(λ̂vT ), where x∗uv represents the optimal solution derived from LPH(λ̂, T ′). Here, λ̂

is the estimated arrival rate and T ′ = (1−α)T representing the actual time horizon where

the offline resources can be consumed, i.e., excluding the sampling phase (see Steps 6-7 of

Algorithm 1). We define LPH(λ, T ) as follows.

max
∑

u∈U,v∈V,(u,v)∈EH
wuvxuv (2)

s.t.
∑

u∈U,(u,v)∈EH
xuv ≤ λv ·T, ∀v ∈ V, (2a)

∑
v∈V,(u,v)∈EH

xuv ≤D, ∀u∈U, (2b)

xuv ∈ [0,1], ∀u∈U,v ∈ V, (u, v)∈ EH . (2c)

Here, xuv is the decision variable representing the expected number of matches between

bin u and item type v. Constraints (2a) bound the number of matches for each online type

by its expected number of arrivals. Constraints (2b) bound the number of matches for each

offline bin by the dimension D. Constraints (2b) hold because packing an item into a bin u

in an heavy edge must break the conditions rduv ≤ 1
2
Cd
u, d∈ [D] for at least one d∈ [D]. As
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a result, for each d∈ [D], at most one item in a heavy edge can be packed into the bin u.

Therefore, at most D items in total can be packed into each bin if only considering heavy

edges. We next show that this LP provides an upper bound of the offline optimal value for

the instances that only match heavy edges.

Lemma 3. The optimal value of LPH(λ, T ) provides an upper bound of the offline opti-

mal for the instances that only heavy edges can be matched under known Poisson arrival

model, where T is the online time horizon and λ represents the arrival rates.

In the third phase, we solve a deterministic maximum matching problem in a bipartite

graph. This graph consists of offline vertices on one side and the online arrivals within a

time horizon of at most T on the other side. Note that we limit our consideration to up to

T arrivals in order to maintain comparability with the offline optimal solution. Specifically,

if the time horizon spanned by total arrivals, which includes both historical data and online

arrivals, is less than or equal to T , we incorporate all the previous arrivals in constructing

the bipartite graph. However, in cases where the time horizon exceeds T , we consider the

online arrivals up until time (1−h)T in combination with all the historical data that span

a duration of hT without sacrificing generality. We then apply the maximum bipartite

matching algorithm to select an offline resource for the arriving vertex. A match is made

if the selected resource possesses adequate capacity to accommodate the vertex.

The fourth phase is the light LP phase, which is designed to solely deal with light edges.

In this phase, we employ an LP-based randomization method to select resources for the

items in light edges. Specifically, we consider a linear program LPL
0 (λ, T,C) defined in (3).

Here, we specify the key parameters λ, T,C in the LP model to emphasize its dependence

on those parameters, where C represents a matrix whose entries record Cd
u for all u ∈ U

and d ∈D. In this phase, we only consider the unused capacity of the offline resource. In

other words, we input the unused capacity for bin u in the dth dimension, denoted as C̄,

into the LP at Step 23 of Algorithm 1. After updating the estimate of λ̂ at Step 22, we

utilize the solution to LPL
0 (λ̂, T ′, C̄) to instruct our allocation. We use T ′ = (1− η)T to

represent the total time horizon in the remaining online process.

max
∑

u∈U,v∈V,(u,v)∈EL
wuvyuv (3)

s.t.
∑

u∈U,(u,v)∈EL
yuv ≤ λvT, ∀v ∈ V, (3a)
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v∈V,(u,v)∈EL
rduvyuv ≤Cd

u, ∀u∈U,d∈ [D], (3b)

yuv ≥ 0, ∀u∈U,v ∈ V, (u, v)∈ EL. (3c)

Lemma 4. The optimal value of LPL
0 (λ, T,C) is an upper bound of the offline optimal

of the instance that only light edges can be matched under known Poisson arrival model

where T is the online time horizon, C is the total capacity of offline bins and λ represents

the parameters of the type-specific arrivals.

In a similar fashion to the two phases dedicated to heavy edges, we include a light

maximum packing phase that utilizes a deterministic matching algorithm in conjunction

with a randomization algorithm used in the fourth phase. Note that multiple items can

be packed in a bin for light edges, we deploy a linear program to determine the matching

decision. Specifically,we denote V ′ as the set of all arrivals before min{t, (1−h)T}, together

with all the historical data and the present item of type v. The matching decision is made

based on the optimal solution y to LPL
1 (V ′) defined in (4), where the decision variables

are {yuv}.

max
∑

u∈U,v∈V ′,(u,v)∈EL
wuvyuv (4)

s.t.
∑

u∈U,(u,v)∈EL
yuv ≤ 1, ∀v ∈ V ′, (4a)

∑
v∈V ′,(u,v)∈EL

rduvyuv ≤Cd
u, ∀u∈U,d∈ [D], (4b)

yuv ∈ [0,1], ∀u∈U,v ∈ V ′, (u, v)∈ EL. (4c)

Comparing this LP to LP (1), we notice that this LP provides an upper bound on the

instance, considering only the matching of light edges since we only relax the integral

constraints of decision variables. It is worthwhile to note that the capacity C here represents

the total capacity, in contrast to the unused capacity described in LP (3).

In summary, the main idea of designing the exposition phases is as follows. We handle

heavy edges first, followed by light edges. For each type of edge, we employ a hybrid algo-

rithm that combines an LP-based randomization technique with a deterministic maximum

matching technique to determine the matching decisions. Note that Phases 2 and 4 both
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involve the LP-based randomization technique, which is to determine the matching proba-

bility based on a proportion of the optimal solution to the LP, which is known as a scaling

parameter. We use different scaling parameters in different phases. Specifically, we use γ

to denote the scaling parameter for the phase handling heavy edges (Phase 2) and γ′ to

denote the parameter for the phases for light edges (Phase 4).

We next proceed to analyze the performance guarantee of this algorithm. Before we start

the analysis for each phase, we first present two necessary concepts: OPTH and OPTL. For

an instance of our problem, we use OPTH to represent the expected reward of the offline

optimal if only heavy edges can be matched, and OPTL to denote the expected reward of

the offline optimal if we can only match light edges. Then, the following lemma holds, since

we can effectively decompose the offline optimal solution for the original instance into two

separate solutions, where each solution consists exclusively of either heavy or light edges.

Lemma 5. OPTH + OPTL ≥OPT.

3.1. Heavy LP Phase

First, we discuss the heavy LP phase. By bounding the gap between the optimal value of

LPH(λ̂, T ′) and OPTH and the probability of the event E that an offline bin u contains

no item before time t where t ∈ [α · T,β · T ), we can get the following lemmas. Here, we

first define ∆ =
√

8ln 1
δ

(h+α)N
and N = minv∈V λv ·T and 0< δ < 1, which is the corresponding

error parameter specified in Lemma 2. By applying Lemmas 1 and 2, (1−∆) · λ̂v ≤ λv ≤
(1 + ∆) · λ̂v holds for all v ∈ V with some probability. Thus, we assume (1−∆) · λ̂v ≤ λv ≤
(1 + ∆) · λ̂v in the subsequent analysis, if there is no further specification.

Lemma 6. The probability that an offline bin u contains no item at the end of the heavy

LP phase is at least e−γ(1+∆)β−α
1−αD. We denote it by qβα.

Lemma 7. The expected reward during the heavy LP phase is weakly larger than fβα ·
OPTH where fβα = 1

D
(1− 3∆)(1−α)(1− qβα).

3.2. Heavy Maximum Matching Phase

We next analyze the heavy maximum matching phase. To determine the expected reward

during this phase, we begin by comparing the expected weight of each matching edge with

OPTH . Then, for each possible value of t and the choices of β and η, we calculate the

probability of the event E, which represents the scenario where bin u remains unpacked

until time t. This information allows us to derive the expected reward for this phase.
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Algorithm 1 Sample-based Algorithm for Online Multidimensional GAP

Input: Online arrivals of agents, history arrivals h ·T
Output: A feasible matching between online and offline vertices
Parameter: Phase parameters α, β, η, θ,and scaling parameters γ and γ′ satisfying 0≤
α≤ β ≤ η≤ θ≤ 1 and 0≤ γ, γ′ ≤ 1

1: while t increases from 0 to T continuously do
2: if 0≤ t < α ·T then . Sampling phase
3: reject all online arrivals
4: end if
5: if t= α ·T then . Estimation
6: according to the arrival history [−h ·T,α ·T ) and Lemma 2, estimate λ̂
7: solve LPH(λ̂, T ′) where T ′ = (1−α)T , and get the solution x̂
8: end if
9: if α ·T ≤ t < β ·T then . Heavy LP phase

10: for each arrival i whose type is v ∈ V do
11: sample an offline vertex u with probability puv = γ x̂uv

λ̂vT ′
, match u and i if u

is available
12: end for
13: end if
14: if β ·T ≤ t < η ·T then . Heavy maximum matching phase
15: for each arrival i whose type is v ∈ V do
16: V ′ = V ([−h ·T,min{t, (1−h)T}))∪{v}
17: find optimal matching M ′ of G′ = (U,V ′,EH)
18: match i and u if (u, v)∈M ′ and u is available
19: end for
20: end if
21: if t= η ·T then . Estimation
22: according to the arrival history during [−h ·T,η ·T ) and Lemma 2, estimate λ̂
23: use C̄ to record the unused capacity of each bin at time t
24: solve LPL

0 (λ̂, T ′, C̄) where T ′ = (1− η)T and get the solution ŷ
25: end if
26: if η ·T ≤ t < θ ·T then . Light LP phase
27: for each arrival i whose type is v ∈ V do
28: sample an offline vertex u with probability puv = γ′ ŷuv

λ̂vT ′
, match u and i if u

is available
29: end for
30: end if
31: if θ ·T ≤ t < T then . Light maximum packing phase
32: for each arrival i whose type is v ∈ V do
33: V ′ = V ([−h ·T,min{t, (1−h)T}))∪{v}, solve LPL

1 (V ′) and get the solution
y

34: sample an offline vertex u with probability puv = yuv, match u and i if u is
available

35: end for
36: end if
37: end while
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Lemma 8. The expected reward during the heavy maximum matching phase is at least

qβαf
η
β ·OPTH , where f ηβ is defined as:

f ηβ =


1
D

(h+β) ln h+η
h+β

, η≤ 1−h
1
D

(h+β)(ln 1
h+β

+ 1− e1−h−η), η > 1−h≥ β
1
D

(1− e−(η−β)), β > 1−h.

To facilitate subsequent analysis, we obtain a lower bound of the probability that u is

not packed any item during the heavy maximum matching phase as below.

Lemma 9. Given the fact that bin u contains no items before the heavy maximum match-

ing phase, the probability of the event E that bin u is not packed any item during the heavy

maximum matching phase is at least

qηβ =


h+β
h+η

, η≤ 1−h

(h+β)e1−h−η, η > 1−h≥ β

e−(η−β), β > 1−h.

3.3. Light LP Phase

At time t= η · T , we estimate the arrival rate again. Following Lemmas 1 and 2, we can

update the estimation λ̂ that satisfies (1−∆′) · λ̂v ≤ λv ≤ (1+∆′) · λ̂v where ∆′ =
√

8ln 1
δ

(h+η)N
.

We next establish a lower bound for the expected value of LPL
0 (λ̂, T ′, C̄) utilized in this

phase. This estimate is derived by taking a portion of OPTL and creating a feasible solution

for LPL
0 (λ̂, T ′, C̄) using the optimal solution for LPL

0 (λ, T,C), whose value is an upper

bound of OPTL. By applying the union bound and Markov’s inequality to calculate the

probability of event E, which represents the availability of an offline bin u before time t

after η ·T , given that no items were packed into bin u before η ·T , we can obtain a lower

bound for the expected reward.

Lemma 10. The expected reward during the light LP phase is at least qβαq
η
βf

θ
η ·OPTL,

where f θη is defined as below:

f θη = (1− 2∆′)γ′(θ− η)

(
1−Dγ′(1 + ∆′)

θ− η
1− η

)
.

Here, we also denote qθη as an upper bound of the expected consumed fraction of some

bin during the light LP phase, conditioning on the event that this bin has not been packed

any item before the light LP phase.
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Lemma 11. Conditioning on the event that bin u has not been packed any item before

the light LP phase, the expected consumption of this bin in d-th dimension for each d∈ [D]

is at most γ′(1 + ∆′) θ−η
1−ηC

d
u. That is, qθη = γ′(1 + ∆′) θ−η

1−η .

3.4. Light Maximum Packing Phase

According to the analysis of previous phase, the probability of the event E that a bin u

has not been packed any items before time ηT is at least qβαq
η
β.

Consider the arrival of an online vertex i with type v ∈ V into the system at a specific

time t ∈ [θT,T ), and let `= (u, i) represent the corresponding edge chosen by Step 34 in

Algorithm 1. By evaluating the lower bound of the expected weight of ` in comparison

to OPTL, as well as determining the probability of the event where the matching of the

current edge is successful, we obtain the following lemma.

Lemma 12. The expected reward during the light maximum packing phase is at least

qβαq
η
βf

1
θ ·OPTL where f 1

θ is

f 1
θ =

(1 + 2D)(1−h− θ) + 2D ln(h+ θ) +h(1 + 2D ln(h+ θ)−Dh)− 2D(1− θ)qθη, θ≤ 1−h

(1− θ)(1−D(1− θ))− 2D(1− θ)qθη, θ > 1−h.

3.5. Parametric Competitive Ratio Analysis

We summarize Lemmas 5, 7, 8, 10 and 12 to get the following theorem.

Theorem 1. Denote N = minv∈V λv · T . For 0 < δ < 1, by choosing phase parameters

α, β, η and θ, and scaling parameters γ and γ′ satisfying 0 ≤ α ≤ β ≤ η ≤ θ ≤ 1 and

0≤ γ, γ′ ≤ 1, with probability at least 1− 2mδ−me
−(h+α)N

8 −me
−(h+η)N

8 , Algorithm 1 has a

competitive ratio of at least

max
α,β,η,θ,γ,γ′

min{FH , FL}

where

FH = fβα +


qβα · 1

D
(h+β) ln h+η

h+β
, η≤ 1−h

qβα · 1
D

(h+β)(ln 1
h+β

+ 1− e1−h−η), β ≤ 1−h< η

qβα · 1
D

(1− e−(η−β)), 1−h< β,
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FL =



qβα ·
h+β
h+η
·
(
f θη + f1

)
, θ≤ 1−h

qβα ·
h+β
h+η
·
(
f θη + f2

)
, η≤ 1−h< θ

qβα · (h+β)e1−h−η ·
(
f θη + f2

)
, β ≤ 1−h< η

qβα · e−(η−β) ·
(
f θη + f2

)
, 1−h< β.

Here f
β
α = 1

D
(1− 3∆)(1−α)(1− qβα),

qβα = e−γ(1+∆)β−α
1−αD,∆ =

√
8ln 1

δ

(h+α)N
,f

θ
η = (1− 2∆′)γ′(θ− η)(1−Dγ′(1 + ∆′) θ−η

1−η ),

qθη = γ′(1 + ∆′) θ−η
1−η ,∆

′ =
√

8ln 1
δ

(h+η)N
,f1 = (1 + 2D)(1−h− θ) + 2D ln(h+ θ) +h(1 + 2D ln(h+ θ)−Dh)− 2D(1− θ)qθη,

f2 = (1− θ)(1−D(1− θ))− 2D(1− θ)qθη.

4. Analysis for Special Cases

Note that the parametric competitive ratio in Theorem 1 is too complicated to figure

out the optimal or near optimal choice of parameters. In this section, we will restrict

our attention to some special cases to fine tune the parameters and then analyze the

corresponding competitive ratios.

4.1. No historical data

In the case without any historical data, we can get the following result which improves the

competitive ratio e−0.25

4D+2
in Naori and Raz (2019).

Proposition 1. Denote N = minv∈V λv ·T . When h= 0 and N is large, for 0< δ < 1, by

setting α=C0N
− 1

3 , β = 0.935 2D
2D+1

, η= θ= 2D
2D+1

, γ = 0.0842D+1
D2 , where C0 is a constant such

that α satisfies 3

√
8ln 1

δ

αN
= α, with probability at least 1−mδ −me

−(h+α)N
8 , the competitive

ratio of Algorithm 1 is at least

(1−C3N
− 1

3 ) · e
−0.225

4D+ 2
,

where C3 is a specific constant defined in the proof.

According to Proposition 1, there exist a threshold N0 that satisfies (1−C3N
− 1

3
0 )e−0.225 =

e−0.25. When N >N0, we have (1−C3N
− 1

3 ) · e−0.225

4D+2
> e−0.25

4D+2
, i.e., we can improve the com-

petitive ratio achieved in Naori and Raz (2019).
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4.2. Heuristics by skipping certain phases

In this section, we fix some phase parameters to tune others and give some feasible lower

bounds. For ease of presentation, we denote the heavy LP phase and light LP phase as

LP phases and denote the heavy maximum matching phase and light maximum packing

phase as max phases.

4.2.1. No Max Phases We first consider the special case that there are no max phases,

i.e., β = η and θ = 1. In the following proposition, we fine tune the other parameters to

obtain a feasible lower bound of competitive ratio.

Proposition 2. Denote N = minv∈V λv · T . For 0 < δ < 1, by setting α = C0N
− 1

3 , β =

η= η1, θ= 1, γ = 1 and γ′ = 1
2D

, where C0 is a constant such that α satisfies 3

√
8ln 1

δ

αN
= α and

η1 is the solution of eDη = 5−η
4

, with a probability of at least 1−2mδ−me
−(h+α)N

8 −me
−(h+η)N

8 ,

the competitive ratio of Algorithm 1 is at least

1

D
· 1− η1

5− η1

· (1−C3N
− 1

2 (h+C0N
− 1

3 )−
1
2 ),

where C3 is a specific constant defined in the proof.

4.2.2. No LP phases In this section, we consider the following special choice of param-

eters: α= β and η= θ, i.e., no heavy and light LP phases. From the above analysis, when

there are no LP phases, the formula of competitive ratio becomes min{FH , FL} where

FH =


1
D

(h+α) ln h+η
h+α

, α≤ η≤ 1−h
1
D

(h+α)(ln 1
h+α

+ 1− e1−h−η), α≤ 1−h< η

FL =


h+α
h+η
· f1, η≤ 1−h

(h+α)e1−h−η · f2, α≤ 1−h< η.

Here, the values of f1 and f2 are updated as below:

f 1
η =

f1 = (1− (h+ η))(1 + 2D) + 2D ln(h+ η) +h(1 + 2D ln(h+ η)−Dh), η≤ 1−h

f2 = (1− η)(1−D(1− η)), η > 1−h.

We further assume our choice of α is at most 1− h. Based on this assumption, we can

establish distinct lower bounds for the competitive ratio by fine-tuning the parameters at

various values of h. Note that the derived competitive ratio here holds with a probability

of one according to the proof of Theorem 1 when there is no LP phase.
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Proposition 3. Denote h0 as (2D2 + 1)(
√

1 + 1
4D2 − 1) + 1

2D
. We can achieve the cor-

responding competitive ratios under different choices of h. Specifically,

• if h ≤ 1
2D

, by setting α = β = 2D
2D+1

(1 + h)e−
f1(2D+1)

2(1+h) − h, η = θ = 2D
2D+1

(1 + h)− h, we

achieve a competitive ratio of f1e
− f1(2D+1)

2(1+h) . Here, f1 = 1− 2Dh+ 2D(1 + h) ln
[

2D(1+h)
2D+1

]
+

h−Dh2;

• if h≥ h0, by setting α= β = 1−h, η= θ= 2− 1
2D
−
√

1 + 1
4D2 , we achieve a competitive

ratio of e1−h−η(1− η)(1−D(1− η));

• if 1
2D
<h<h0, by setting θ= η= 1− 1

2D
, β = α and

α=

max{α1, α2,0} , α1 ≤ 1−h

1−h, α1 ≥ 1−h,

where α1 = exp{1− 5
4
e

1
2D
−h}−h and α2 = exp{−e 1

2D
−h}−h, we achieve a competitive ratio

of 
1
D

(h+α)(ln 1
h+α

+ 1− e 1
2D
−h), α1 ≤ 1−h

e
1

2D
−h 1

4D
, α1 ≥ 1−h.

We next compare the competitive ratios of the heuristics with Algorithm 1 under the

optimal choices of the four phases parameters and the two scaling parameters in Figure 1.

It is worth noting that the analysis for the heuristics with no max phases, or equivalently

only LP phases in Section 4.2.1 contains some approximation under the assumption that

N is large, which may lead to a very poor performance when N is small. As a result, we

enumerate an optimal α and use the rest parameters suggested in Proposition 2 for our

analysis. For the heuristics with no LP phases, we directly apply the parameters suggested

by Proposition 3.

Figure 1 compares the competitive ratio across different values of D, N and h, from

which we find the heuristics with no LP phases, or equivalently those with only max

phases perform very close to Algorithm 1. The competitive ratio of the heuristics with

only max phases decreases when h surpasses a certain threshold denoted as h0 := (2D2 +

1)(
√

1 + 1
4D2 − 1) + 1

2D
. This threshold is determined by the second case in Proposition 3.

When h gets larger, the competitive ratio of the heuristics with only LP phases increases.

Furthermore, in most cases except the case where D = 1 and N = 2000, the competi-

tive ratio for the heuristics with only LP phases can reach a comparable or even higher

competitive ratio than those with only max phases when h is close to 1.



Author: Sample-Based Online Generalized Assignment Problem
Article submitted to Management Science; manuscript no. MS-0001-1922.65 19

In summary, we provide a guideline on fine tuning the parameters when different sizes

of historical data are available, i.e., h takes different values. Specifically, when h is small,

we can adopt the heuristics by skipping LP phases (see Section 4.2.2) and when h is large,

we can use the heuristics by skipping max phases (see Section 4.2.1), which allows us to

reach a relatively good performance.
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(a) D= 1, N = 2000
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(b) D= 1, N = 10000
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(c) D= 1, N = 100000
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(d) D= 2, N = 2000
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(e) D= 2, N = 10000
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(f) D= 2, N = 100000

Figure 1 Comparisons of competitive ratios under three parameter settings

4.3. Online matching problems

In this section, we restrict to a simplified setting where the dimension D= 1 and both the

capacity of offline bins and the demand of online items are set to 1. Under this setting,

the problem reduces to the traditional online edge-weighted bipartite matching, where one

side is offline vertices and the other side is online vertices. Since there is no light edge in

this setting, we can simplify Theorem 1 by setting η= θ= 1 to get the following statement.

Corollary 1. Denote N = minv∈V λv · T . Under the online matching setting, for 0<

δ < 1, by choosing parameters α, β and γ satisfying 0≤ α≤ β ≤ 1 and 0≤ γ ≤ 1, with a

probability of at least 1−mδ−me
−(h+α)N

8 , Algorithm 1 has a competitive ratio of at least:(1− 3∆)(1−α)(1− e−γ(1+∆)β−α
1−α ) + e−γ(1+∆)β−α

1−α (h+β)(ln 1
h+β

+ 1− e−h), β ≤ 1−h

(1− 3∆)(1−α)(1− e−γ(1+∆)β−α
1−α ) + e−γ(1+∆)β−α

1−α (1− e−(1−β)), β > 1−h,
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where ∆ =
√

8ln 1
δ

(h+α)N
.

We first note that most of our ratios are between 1
e

and 1− 1
e
, where the former is the

state-of-art ratio for the random order model given from Kesselheim et al. (2013) and the

latter is the ratio of the typical algorithm for known Poisson model proposed by Feldman

et al. (2009). This implies that incorporating the information on arrival model (Poisson

arrival) can help improve the algorithm’s performance even when we have no information

on its arrival rate, equivalently no historical data (h= 0).

We compare the bound of competitive ratios at different h and N in Figure 2a. From

the figure, we first observe that when h increases, our competitive ratio increases, which

indicates that adding historical data indeed help improve our algorithm’s performance.

Second, we also find that the value of N also significantly affects the algorithm’s perfor-

mance. Note that the value of N indicate the quality of data measured by minv∈V λv for a

fixed time horizon T . The dependence on N indicates that when minv∈V λv is large for a

given planning horizon, i.e., no item type is underrepresented, our algorithm performs well.

In other words, we observe both quality and quantify of data will affect our algorithm’s

performance.

We then discuss the effect of historical data’s quantity (h) and quality (N) on the trade-

off between exploration and exploitation measured by the values of α and β. We plot the

optimal α and β at different h and N in Figures 2b and 2c, respectively. After fixing h, we

plot the portion of three phases under different N in Figures 2d, 2e and 2f. Similarly, after

fixing N , we also plot the portion of three phases under different choices of h in Figures

2g, 2h and 2i. In these six figures, the blue, green and red regions correspond to sampling

phase, (heavy) LP phase and maximum matching phase, respectively.

To see the effect on the optimal choice of α, from Figure 2b, we observe that when either

h or N increases, the optimal α decreases. It implies that when the historical data size

increases, we can shorten the exploration period (sampling phase before the time point

αT ) and exploit the decision earlier to get better performance. On the other hand, if the

data quality is high, i.e., each item type has sufficient arrivals for us to learn its arrival

rate, we can also shorten the exploration period. As shown in Figures 2e, 2f, 2h and 2i,

when h and N are large enough, i.e., a great amount of historical data, we can even ignore

the sampling phase and initiate the exploitation directly.
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We then analyze the effect on the choice of the hyperparameter β. From Figure 2c,

we see that a larger β is needed when N increases or h decreases. Note that when N

increases, the optimal α decreases according to our earlier analysis. This concludes that

more periods are reserved for the LP phase with fewer periods for maximum matching

phase when N increases. Such a trend can also be seen in Figures 2d, 2e and 2f. It implies

that increasing data quality (minv∈V λv) can result in a more precise estimate of arrival

rates and provide more substantial improvements in the LP phase compared to that in the

maximum matching phase. Conversely, our analysis indicates that the performance of the

maximum matching phase is primarily determined by the ratio of the historical data to

the online data, as measured by h. Thus, an increase in h can improve the performance of

the maximum matching phase more than that of the LP phase, which implies β decreases

with h.

Further, under the restricted online matching setting, if there is no historical sample,

we can set β = 1 and choose one α such that 1− 3∆ = 1−α. In this case, we can achieve

a relatively good performance guarantee.

Corollary 2. Denote N = minv∈V λv · T . Under the online matching setting, without

historical samples (h = 0), for 0 < δ < 1, with a probability of at least 1−mδ −me−αN8 ,

Algorithm 1 can achieve a competitive ratio with at least

(
1− 4

3

√
9ln 1

δ

N

)
(1− 1

e
) by choosing

α=
3

√
72ln 1

δ

N
and β = γ = 1.

5. Experiments

In this section, we first utilize a dataset obtained from EverySender, a well-known task

assignment platform, as described in the study by Tong et al. (2016) to examine the

effectiveness of our algorithms in solving the online matching problem. Following that, we

proceed to evaluate the performance of our algorithms on a synthetic dataset, specifically

focusing on the online multidimensional GAP problem.

5.1. Online Matching

Dataset and preprocessing. EverySender dataset includes a set of workers and tasks. Each

worker and task has a location (x, y). The data also provide the successful rate for each

worker and payoff for each task. We process the data in the following way. We treat each

worker as an online item and each task as an offline bin. We divide the map into a grid map
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Figure 2 Illustrations of Proposition 1

where each grid has a size of (dx,dy), and group every worker/task in the same grid as one

type. As a result, we generate a normalized location (x̃= bx/dxc, ỹ= by/dyc) for each type

of worker and task. We use (x̃, ỹ) to indicate the worker/task’s type. We use the frequency

of each worker type to approximate its arrival rate. We use the average successful rate

(payoff) of the same type of workers (tasks) as the successful rate (payoff) of this type.

For each pair of worker and task, we add an edge between them if the Euclidean distance

between them is smaller than a given threshold, and the weight of this edge is the product

of the corresponding successful rate and payoff.

Algorithms. We test two heuristic algorithms based on Algorithm 1 and a greedy algorithm.

Since we consider our algorithm in the online matching setting here, we set η = θ = 1

directly.



Author: Sample-Based Online Generalized Assignment Problem
Article submitted to Management Science; manuscript no. MS-0001-1922.65 23

• Grd: The greedy algorithm. For each arrival i of type v, match it to the available

offline vertex u with the largest weight wuv.

• Sam1: Algorithm 1 with α= max{ee−h − 1,0}, β = 1−h and γ = 1.

• Sam2: Algorithm 1 with α= max{ee−h − 1,0}, β = 1 and γ = 1.

According to Corollary 1, the optimal α and β depends on the values of h and N . However,

N is not known by us in practice. We then choose a universal value of α and β to run our

algorithm. Specifically, we set α = max{ee−h − 1,0} as suggested by Zhang et al. (2022),

since this α maximizes the ratio in Corollary 1 when there is no LP phase. We choose

two values for β: β = 1− h and β = 1. These two values are chosen because according to

Corollary 1, the analyses for β ≤ 1−h and β > 1−h are different, which implies β = 1−h

is a critical value. β = 1 is considered since it refers to a special case where only LP phase

is used in the exploitation period.

We test over T = 1000,2000, · · · ,5000 and h = 0,0.1,0.2, · · · ,0.9. For each h and T , we

generate an arrival sequence of a length of T and a history sequence of a length of h ·

T according to the arrival rates. We then run algorithms over the sequence to get the

corresponding total reward. We repeat the procedure M = 50 times to get the average

reward. To evaluate the competitive ratio, we first calculate the offline optimal reward in

the following way. For each arrival sequence, we solve the maximum matching problem

to get an optimal matching decision and evaluate its reward. We take average of these

optimal rewards to get its offline average reward. We use the ratio between an algorithm’s

average reward and the offline average reward denoted by the empirical competitive ratio

as the performance metric.

Results and discussion. We compare the ratio of different algorithms at different h and T

and summarize the results in Figure 3 and Figure 4.

In Figure 3, we test different h, fixing T = 1000 and T = 2000. We can see that when

h becomes larger, Sam1 and Sam2’s performance shows an increasing trend and Grd’s

performance keeps almost unchanged. This is consistent with the analysis in Corollary 1

that when h goes larger, the performance of our algorithms becomes better. By comparing

Sam1 and Sam2, we find that Sam2 does not always dominate Sam1 under different

parameters (h and T ). In fact, according to Figure 3b, when T is large, Sam1 consistently

outperforms Sam2 when h is large. It implies that adding the maximum matching phase

indeed helps improve the algorithm’s performance in many instances.
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In Figure 4, we test different T when fixing h = 0.3,0.5. We find that when T is larger,

our algorithm’s performance becomes better in general. This is again consistent with our

findings in Corollary 1. We also find the gap between T = 5000 and T = 1000 becomes

smaller when h increases. This is because if we have many historical data, we do not need

a large planning horizon to achieve a good performance.

In summary, increasing the historical data size (a larger h) or increasing the planning

horizon (a larger T ) helps improve the performance of our heuristic algorithms even when

N is small. Our heuristic algorithms can outperform greedy algorithm when h and T are

large.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h

0.75

0.80

0.85

0.90

0.95

E
m

p
ir

ic
a
l 
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

GRD

SAM1

SAM2

(a) T = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

E
m

p
ir

ic
a
l 
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

GRD

SAM1

SAM2

(b) T = 2000

Figure 3 Different h

1000 2000 3000 4000 5000

T

0.86

0.88

0.90

0.92

0.94

0.96

0.98

E
m

p
ir

ic
a
l 
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

GRD

SAM1

SAM2

(a) h= 0.3

1000 2000 3000 4000 5000

T

0.86

0.88

0.90

0.92

0.94

0.96

0.98

E
m

p
ir

ic
a
l 
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

GRD

SAM1

SAM2

(b) h= 0.5

Figure 4 Different T



Author: Sample-Based Online Generalized Assignment Problem
Article submitted to Management Science; manuscript no. MS-0001-1922.65 25

5.2. Online Multidimensional GAP

Dataset and preprocessing. Let U [a, b] denote a uniform distribution on the interval [a, b].

A problem instance is generated as follows. First we define U = [m] and V = [n]. For

each u ∈ U and v ∈ V , we define an edge (u, v) with weight wuv which is generated from

a uniform distribution U [0,1]. For the capacity of each bin u ∈ U , we set the capacity

of each dimension as 1. For each edge (u, v), the d-th demand rduv is generated from a

uniform distribution U [0,1]. For the arrival rates, we first generate a value lv according to

a uniform distribution U [0,1], then normalize the value to get the arrival rate for each v,

i.e., λv = lv∑
v lv

. After the normalization, the expected number of total arrivals is T .

Algorithms. We test three heuristic algorithms based on Algorithm 1 and a greedy algo-

rithm.

• Grd: A greedy algorithm. For each arrival i of type v, match it to the available offline

vertex u with the largest edge weight wuv. Here “available” means u has enough capacity

for edge (u, v).

• Sam-Max: The Algorithm 1 has sampling phase and max phases, the parameters are

chosen according to Proposition 3.

• Sam-LP: The Algorithm 1 has sampling phase and LP phases. α= 0.05, β = η where

η is the solution of eDη = 5−η
4

. θ = 1, γ = γ′ = 1. Specifically, η ≈ 0.185 under D = 1 and

η≈ 0.101 under D= 2.

• Sam-Mix: The Algorithm 1 has all phases. α = 0.05, β = α + η−α
2

where η is the

solution of eDη = 5−η
4

. θ= η+ 1−η
2

, γ = γ′ = 1.

Remark 1. Note that for Sam-LP, we do not know the exact value of N , hence we

simply choose a small value of α= 0.05. β, η, γ are chosen according to the Proposition 2.

For γ′, we choose γ′ = 1 because the value γ = 1
2D

suggested by Proposition 2 is too

conservative. The intuition of setting γ′ to 1 is because when there is no other phase after

the light LP phase, a larger value of γ′ is more cost-effective. For Sam-Mix, we choose the

same values of α, η, γ and γ′ as in Sam-LP, and divide the heavy (or light) LP phase of

Sam-LP into heavy (or light) LP phase and heavy (or light) max phase with equal size.

We use the parameters D = 1,2, m= n= 10 to generate our randomized graph G, and

we generate 10 graphs for each D. For each graph, we test over T = 50,100, · · · ,500 and

h= 0,0.1,0.2, · · · ,0.9. We then test the empirical competitive ratio following the same pro-

cedure as in the online matching problem above. We test over smaller T s than those in the
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online matching problem because (1) the offline optimal packing problem here is NP-hard

and time-consuming; and (2) these smaller T s are already good enough for our sampling

algorithms. For different graphs, we not only give the average empirical competitive ratio

for all graphs, but also show the standard errors of the empirical competitive ratios by

error bars to measure the robustness of different algorithms.
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Figure 5 Different h

Results and discussion. We summarize the results in Figure 5 and Figure 6. Each error

bar shows the average empirical competitive ratio± standard error.

In Figure 5, we test different h, fixing T = 100,250 and D = 1,2. Generally speaking,

either Sam-Mix or Sam-LP has the best performance, i.e., achieving the largest ratio in

all cases except the case that h= 0, T = 100 and D= 2. This means in practice, we do not

need a very large sample size to achieve a good performance for Sam-Mix or Sam-LP as

discussed in Section 3. Sam-Max’s performance is much worse than the performance of

Sam-Mix and Sam-LP, hence we focus on Sam-Mix and Sam-LP in the following analysis.
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Figure 6 Different T

We find out that when h goes larger, the performance of Sam-Mix and Sam-LP increases.

The increasing trend shows a diminishing decreasing pattern. This is because when we

have enough data, the estimation is already accurate enough, then a larger historical data

size h makes a smaller change.

We further find that the performances of Sam-Mix and Sam-LP are close in most cases,

except the case when h< 0.5 and D= 2, where the gap between Sam-Mix and Sam-LP is

relatively large. This is because when D is large, the problem becomes more complicated

and needs more accurate estimation of the arrival rates to get a good solution of the LP.

When h is small, the estimation of arrival rates is less inaccurate, which leads to a poor

performance of LP phases in Sam-LP, whereas Sam-Mix incorporates the max phases

that do not depend on the estimation to reach a better performance.

In Figure 6, we test different T when fixing h= 0.3,0.5 and D= 1,2. In general, we find

out that Sam-LP and Sam-Mix outperform other two baselines except when T = 50. This

is because when T = 50, the number of samples are too small (the type of online vertices
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are n = 10), the ratios of our algorithms should be small. When T becomes larger, the

performance of Sam-Mix and Sam-LP is increasing because we have more samples and

the increasing speed is decreasing. After T is large enough (T ≥ 250 when h = 0.5), the

performance of Sam-Mix and Sam-LP becomes stable. When h= 0.3, D= 2 and T < 250,

there is a significant gap between Sam-Mix and Sam-LP, and this can be explained by

the similar analysis as we discuss for Figure 5.

To summarize, Sam-Mix has the best performance among all tested algorithms and

Sam-LP can achieve similar performance as Sam-Mix when h > 0.5 and T > 250. When

h and T is increasing, the performance of Sam-Mix and Sam-LP becomes better. The

marginal utility of h and T is decreasing when h and T are large. The performance becomes

stable when h and T are larger than some thresholds, i.e., if we already have “enough data”

(large historical data h and planning horizon T ), we do not need more data. In practice,

the thresholds of h and T are small comparing with the theoretical analysis. We can use

Sam-Mix for all non-trivial cases (h> 0 and T > 50), and if we have larger h, T or small

D, we can also use Sam-LP which is more efficient than Sam-Mix.

6. Conclusions

We study the online multidimensional GAP in this paper. By providing a sample-based

multi-phase algorithm, we provide a parametric performance guarantee. From the para-

metric form of the competitive ratio, we analyze the effect of historical data size and

the dimension of capacity (demand) on the algorithm’s performance. Finally, we test our

algorithms by a real-world dataset (online matching) and a synthetic dataset (online mul-

tidimensional GAP).
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Appendix A: Missing proofs in Section 2

A.1. Proof of Lemma 1

Lemma 1 (Number of Samples). For a Poisson arrival process with an arrival rate λ > 0 during the

time horizon of T , and denote N = λ ·T , we have that with probability 1− e−N8 , the number of arrivals n is

at least

n≥ 1

2
N.

Proof The number of arrivals n follows a Poisson distribution with parameter N . According to Fact

4 from Canonne (2019), we can directly prove this lemma. �

A.2. Proof of Lemma 2

Lemma 2 (Arrival Rate Estimation). For a Poisson arrival process with an unknown arrival rate λ>

0 that begins at time t= 0, if we observe n points arriving at time t1, t2, . . . , tn, we can estimate the arrival

rate λ̂= tn
n

, and for 0< δ < 1, with probability 1− δ that

(1−∆) · λ̂≤ λ≤ (1 + ∆) · λ̂

where ∆ =

√
4 ln 1

δ

n
.

Proof According to the property of Poisson arrival process, the differences between consecutive two

tis follow an exponential distribution. Chapter 2 of Wainwright (2019) gives us the concentration bounds of

an exponential distribution random variable. �

Appendix B: Missing proofs in Section 3

B.1. Proof of Lemma 3

Lemma 3. The optimal value of LPH(λ, T ) provides an upper bound of the offline optimal for the instances

that only heavy edges can be matched under known Poisson arrival model, where T is the online time horizon

and λ represents the arrival rates.

Proof Denote r as a realization of instance I which is a possible input sequence of online item types.

We then define xru,v as the number of packing of online item v into offline bin u by the offline optimal under

realization r and Pr as the probability of the realization r. Here, only heavy edges can be considered in

the offline optimal. We next denote x∗uv as
∑

r
Prx

r
u,v, which represents the expected number of packing v

into u by the offline optimal. Notice that OPT(I) =
∑

r
Pr
∑

u,v
xru,vwuv =

∑
u,v
wuv(

∑
r
Prx

r
u,v), equal to∑

u,v
wuvx

∗
uv. It suffices to show {x∗uv} is a feasible solution to LPH(λ, T ).

For Constraints (2a), ∀v ∈ V ,
∑

u∈U,(u,v)∈EH x
∗
uv =

∑
r
Pr
∑

u∈U,(u,v)∈EH x
r
u,v ≤

∑
r
PrN

r
v = λvT , where N r

v

denotes the number of items of type v in realization r. The inequality holds because the total number of

packing of items of type v cannot larger than the number of arriving items of type v, while the last equality

is from the linearity of expectation.

For Constraints (2b), ∀u ∈ U , we have
∑

v∈V,(u,v)∈EH x
∗
uv =

∑
r
Pr
∑

v∈V,(u,v)∈EH x
r
u,v ≤

∑
r
PrD = D. The

reason for the inequality is as follows. Each xru,v is an integer which represents the number of packing an

item of type v into bin u under realization r. Since only heavy edges are considered, each packing must break
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the conditions rduv ≤ 1
2
Cd
u, d∈ [D] for at least a d∈ [D]. That is, for each d∈ [D], at most one item that break

the condition rduv ≤ 1
2
Cd
u can be packed into the bin u. Hence at most D items can be packed into one bin.

The argument above that at most one item that break the condition rduv ≤ 1
2
Cd
u can be packed into one bin

u for each d ∈ [D] implies that each xru,v is at most 1. Thus, each x∗u,v is also at most 1, which satisfies

Constraints (2c). �

B.2. Proof of Lemma 4

Lemma 4. The optimal value of LPL
0 (λ, T,C) is an upper bound of the offline optimal of the instance that

only light edges can be matched under known Poisson arrival model where T is the online time horizon, C

is the total capacity of offline bins and λ represents the parameters of the type-specific arrivals.

Proof We adopt a similar setup as in the proof of Lemma 3 and define the realization r, the yru,v and

the y∗uv in the same way. Here, the only difference is that we only consider light edges can be used in the

offline optimal. Notice that OPT(I) =
∑

r
Pr
∑

u,v
yru,vwuv =

∑
u,v
wuv(

∑
r
Pry

r
u,v), equal to

∑
u,v
wuvy

∗
uv. It

suffices to show {y∗uv} is a feasible solution to LPL
0 (λ, T,C).

For Constraints (3a), for each v ∈ V ,
∑

u∈U,(u,v)∈EL y
∗
uv =

∑
r
Pr
∑

u∈U,(u,v)∈EL y
r
u,v ≤

∑
r
PrN

r
v = λvT , where

N r
v denotes the number of item type v in realization r. The inequality holds because the total number of

packing of items of type v cannot exceed the number of arriving items of type v, while the last equality is

from the linearity of expectation.

For Constraints (3b), ∀u ∈ U,d ∈ [D], we have
∑

v∈V,(u,v)∈EL r
d
uvy
∗
uv =

∑
r
Pr
∑

v∈V,(u,v)∈EL r
d
uvy

r
u,v ≤∑

r
PrC

d
u = Cd

u. The inequality holds because the capacity cannot be exceeded from the feasibility of the

allocation under each realization r. �

B.3. Proof of Lemmas 6 and 7

To prove these two lemmas, we need to introduce another two lemmas first.

Lemma 13. The optimal value of LPH(λ̂, T ′) is lower bounded by 1−α
1+∆

OPTH .

Proof From Lemma 3, the optimal value of LPH(λ, T ) is an upper bound of the offline optimal OPTH

in the original problem. It suffices to show the optimal value of LPH(λ̂, T ′) is lower bounded by the product

of 1−α
1+∆

and the optimal value of LPH(λ, T ). We assume the optimal solution of LPH(λ, T ) is {x∗uv}. We

next show { 1−α
1+∆

x∗uv} is a feasible solution of LPH(λ̂, T ′).

For Constraints (2a), for each v ∈ V , from the feasibility of {x∗uv} in LPH(λ, T ), we have
∑

u∈U x
∗
uv ≤

λv · T . This means
∑

u∈U
1−α
1+∆

x∗uv ≤ 1−α
1+∆

λv · T = λv
1+∆

· (1 − α)T . This is upper bounded by λ̂v · T ′ under

our assumption, which corresponds to Constraints (2a) in LPH(λ̂, T ′). For Constraints (2b) and (2c), since

0≤ 1−α
1+∆
≤ 1, we can directly induce the feasibility of these two constraints in LPH(λ̂, T ′).

Because { 1−α
1+∆

x∗uv} is a feasible solution of LPH(λ̂, T ′) with the specified probability, the optimal value of

LPH(λ̂, T ′) is weakly larger than the corresponding value of the feasible solution { 1−α
1+∆

x∗uv}, which is the

product of 1−α
1+∆

and the optimal value of LPH(λ, T ). �

Lemma 14. For t∈ [α ·T,β ·T ), the probability of the event E that an offline bin u contains no item before

time t is weakly larger than e
−γ(1+∆) t−αT

(1−α)T
D

.
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Proof The packing event of an item of type v ∈ V into bin u before time t follows a Poisson distribution

with a parameter λv
γx̂uv
λ̂vT ′

(t−αT ), where the first term λv corresponds to the arrival rate, the second term γx̂uv
λ̂vT ′

corresponds to the matching probability and the third term (t−αT ) corresponds to the time horizon. This is

from the property of the compound Poisson process where each random variable is a Bernoulli distribution.

From the independency of different online types in V , the event that u gets packed by an online item before

time t follows a Poisson distribution with a parameter
∑

v∈V λv
γx̂uv
λ̂vT ′

(t−αT ), then we have:

Pr[E] = e
−

∑
v∈V λv

γx̂uv
λ̂vT ′

(t−αT ) ≥ e−γ(1+∆) t−αT
(1−α)T

∑
v∈V x̂uv ≥ e−γ(1+∆) t−αT

(1−α)T
D
.

The first equation is because of the property of Poisson distribution, first inequality is from λv ≤ (1 + ∆) · λ̂v
and the second inequality is from Constraint (2b). �

From the above two lemmas, we can come back to prove our lemmas.

Lemma 6. The probability that an offline bin u contains no item at the end of the heavy LP phase is at

least e−γ(1+∆) β−α
1−αD. We denote it by qβα.

Proof From Lemma 14, by setting t as βT , we can conclude our statement. �

Lemma 7. The expected reward during the heavy LP phase is weakly larger than fβα ·OPTH where fβα =

1
D

(1− 3∆)(1−α)(1− qβα).

Proof For each heavy edge pair (u, v) between an offline bin u ∈ U and an online type v ∈ V , the

expected total reward RHeavy LP
u,v contributed by the packing of items of type v into bin u is weakly larger

than

RHeavy LP
u,v ≥wuv

∫ βT

αT

e
−γ(1+∆) t−αT

(1−α)T
D · γ x̂uv

λ̂vT ′
·λvdt

where inside the integration, the term e
−γ(1+∆) t−αT

(1−α)T
D

corresponds to the lower bound of the probability of

the unmatched event before t (see Lemma 14), the term γ x̂uv
λ̂vT ′

corresponds to the matching probability and

λvdt is the probability that there is a v in the time dt. After integration and simple inequalities, RHeavy LP
u,v

can be lower bounded by

RHeavy LP
u,v ≥wuvx̂uv

∫ (β−α)T

0

(1−∆)
γ

(1−α)T
e
−γ(1+∆) t

(1−α)T
D
dt

=wuvx̂uv · (1−∆)
γ

(1−α)T
· (1−α)T

γ(1 + ∆)D
· e−γ(1+∆) t

(1−α)T
D|0(β−α)T

≥wuvx̂uv ·
1

D
(1− 2∆)(1− e−γ(1+∆) β−α

1−αD)

The first inequality is from (1−∆) · λ̂v ≤ λv, and the last is from 1−∆
1+∆

> 1− 2∆.

Considering all heavy edge pairs between u ∈ U and v ∈ V and applying Lemma 13, the expected reward

during the heavy LP phase is∑
(u,v)∈EH

RHeavy LP
u,v ≥ 1

D

1− 2∆

1 + ∆
(1−α)(1− e−γ(1+∆) β−α

1−αD) OPTH

≥ 1

D
(1− 3∆)(1−α)(1− e−γ(1+∆) β−α

1−αD) OPTH .

�
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B.4. Proof of Lemmas 8 and 9

To prove these lemmas, we also need some auxiliary lemmas. We use w` to represent the weight of the

matching edge ` of the arriving vertex at this time t.

Lemma 15. E[w`]≥ OPTH

D·T
∑
v∈V λv

.

Proof We denote the size of the set V ′ (Step 16) by k and the total weight of edges in M ′ by w(M ′).

Since each vertex in V ′ arrives in the system in the same way, by symmetry, if we fix the size |V ′| of the set

V ′ as k′, we have E[w`| |V ′|= k′] = E[w(M′)| |V ′|=k′]
k′

.

We then assume the time horizon corresponding to V ′ is T ′. If T ′ <T corresponding to the case t < (1−h)T

in Step 16, we denote the set of the arriving vertices in the following time horizon of T −T ′ by V ′′. For each

realization of V ′′, if M ′′ is the optimal matching of G′′ = (U,V ′∪V ′′,E), E[w(M′)| |V ′|=k′]
k′

≥ E[w(M′′)| |V ′|=k′,V ′′]
k′+|V ′′| ,

from the maximum weight matching property. We then assume the size of V ′′ is k′′ and take expectations

over all V ′′ with the same size, we have E[w(M′)| |V ′|=k′]
k′

≥ E[w(M′′)| |V ′|=k′,|V ′′|=k′′]
k′+k′′

. If we take the expectations

over all possible k′ and k′′, we denote the set of arriving vertices in the time interval [0, T ) as V , and we have

E[w`]≥ E[E[OPT′ | |V |=k]

k
], where the outside expectation in the right-hand side if taken over k. Here, OPT′

represents the value of the optimal matching. From the fact that there are at most D items in one bin when

considering only heavy edges, we have OPT′ ≥ 1
D

OPTH .

For the second case where T ′ = T corresponding to t≥ (1−h)T in Step 16, we can directly get E[w`| |V ′|=

k′] = E[w(M′)| |V ′|=k′]
k′

= E[OPT′ | |V |=k]

k
, because both V and V ′ is from a time horizon of T and sampled in the

same way. We can also get E[w`]≥E[E[OPT′ | |V |=k]

k
] by expectation over k.

If suffices to show E[E[OPT′ | |V |=k]

k
] ≥ OPT′

T
∑
v∈V λv

, which can further show it is at least OPTH

D·T
∑
v∈V λv

. If we

treat k as the independent variable x, and we use f(x) to represent the corresponding value E[OPT | |V |=

x], we need to show E[ f(x)

x
] ≥ E[f(x)]

E[x]
. If we define px as the probability of the value x, it’s equivalent to

show
∑

x
px

f(x)

x
≥

∑
x pxf(x)∑
x pxx

. By reformulating the terms, it is equivalent to show (
∑

x px
f(x)

x
)(
∑

x pxx) ≥∑
x
pxf(x), i.e.,

∑
x
p2
xf(x)+

∑
(x,y):x 6=y pxpy

f(x)

x
y≥

∑
x
pxf(x). By moving the first term in LHS to the right

and 1− px =
∑

y 6=x py, we get
∑

(x,y):x 6=y pxpy
f(x)

x
y≥

∑
x
px(
∑

y 6=x py)f(x).

If we place the two terms considering the same pairs of x and y together, we get:∑
{x,y}:x 6=y

pxpy

(
f(x)

x
y+

f(y)

y
x

)
≥

∑
{x,y}:x 6=y

pxpy(f(x) + f(y)) =
∑

{x,y}:x 6=y

pxpy

(
f(x)

x
x+

f(y)

y
y

)
It suffices to show f(x)

x
y+ f(y)

y
x≥ f(x)

x
x+ f(y)

y
y for each pair of x and y, and we can backward all previous

equivalent transformations to finish our proof.

Since all arrivals follow independent Poisson processes, when the total number of arrivals is fixed, each

arrival’s type can be sampled from an i.i.d. distribution according to the parameters of the Poisson pro-

cess. According to this property and the maximum weight matching property, for the function f(x) =

E[OPT | |V |= x] over all positive integer x, f(x)

x
is decreasing with the increase of x. By the rearrangement

inequality (Hardy et al. 1952), we can directly get f(x)

x
y+ f(y)

y
x≥ f(x)

x
x+ f(y)

y
y. �

Lemma 16. When β · T ≤ t <min{ηT, (1− h)T}, the probability of the event E that bin u is not packed

any item before time t is at least qβα ·
(h+β)T

hT+t
.
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Proof We denote the size of V ′ excluding the type v for the present item i as k′. If the total number of

arrivals in the time interval [−hT,βT ) is w, from Lemma 6, we have:

Pr[E| w,k′] = qβα
∏

each arrival between w and k′

Pr[u keeps unmatched upon this arrival]

= qβα

k′∏
j=w+1

(1− 1

j
)≥ qβα

w

k′

The second equation is from the symmetry of all arrivals. The last equation is because
∏k′

j=w+1(1− 1
j
) =∏k′

j=w+1( j−1
j

) = w
w+1
· w+1
w+2
· · · k′−1

k′
= w

k′
.

We take expectations over all w, we have Pr[E|k′]≥ qβα
E[w|k′]
k′

= qβα
(h+β)T

hT+t
, where the last equation is from the

fact that the value of E[w|k′]
k′

is exactly equal to the ratio between the length of the time horizon because the

probability of an arrival at any time t′ in the time interval [−hT, t) is the same. �

Lemma 17. If β ≤ 1− h, when (1− h)T ≤ t < ηT , the probability of the event E that bin u is not packed

any item before time t is at least qβα(h+β)e−
t−(1−h)T

T .

Proof We denote the total number of arrivals in the time interval [−hT,βT ) and the size of V ′ excluding

the type v for the present item i as w and k′ respectively. We further denote the total number of arrivals in

the time interval [(1−h)T, t) as num.

Since the event that u is unmatched before time t can be decomposed into three events: u is unmatched

before time βT , u is unmatched during the time [βT, (1− h)T ) and u keeps unmatched during the time

[(1−h)T, t). Applying the similar argument in the proof of Lemma 16, the probability of the second event is

at least w
k′

, while the probability of the third event is at least (1− 1
k′+1

)num. Thus, taking expectations over

w, we have Pr[E|k′, num]≥ qβα(h+β)(1− 1
k′+1

)num.

From the assumption that T is large, we know that k′ is large then (1− 1
k′+1

)k
′+1 ≈ e−1. Then we can get

the approximation of qβα(h+β)(1− 1
k′+1

)num:

qβα(h+β)(1− 1

k′+ 1
)num = qβα(h+β)(1− 1

k′+ 1
)
(k′+1)· num

k′+1 ≈ qβα(h+β)e
− num
k′+1 .

If we treat num
k′+1

as a whole, because of the convexity of the function e−x, Pr[E] ≥ qβα(h + β)E[e
− num
k′+1 ] ≥

qβα(h+β)e
−E[ num

k′+1
]
. It suffices to show E[ num

k′+1
]≤ t−(1−h)T

T
.

From the independency between num and k′, E[ num
k′+1

] = E[num]E[ 1
k′+1

]. For E[num], it is equal to (t− (1−

h)T )
∑

v∈V λv. For E[ 1
k′+1

], we can treat the distribution of k′ as a Poisson distribution with some fixed

parameter λ′ because of the additive property of independent Poisson distribution. We have:

E
[

1

k′+ 1

]
=

∞∑
x=0

(λ′)x

x!
e−λ

′ 1

x+ 1
=

1

λ′

∞∑
x=0

(λ′)x+1

(x+ 1)!
e−λ

′
=

1

λ′
(1− e−λ′)≤ 1

λ′
=

1

E[k′]
.

Thus, we get E[ num
k′+1

] = E[num]E[ 1
k′+1

]≤ (t−(1−h)T )
∑
v∈V λv

T
∑
v∈V λv

, which is equal to the wanted term. �

Lemma 18. If β > 1− h, when βT ≤ t < ηT , the probability of the event E that bin u is not packed any

item before time t is at least qβαe
− t−βT

T .
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Proof We denote the size of V ′ excluding the type v for the present item i and the total number of

arrivals in the time interval [βT, t) as k′ and num, respectively.

Since the event that u is unmatched before time t can be decomposed into two events: u is unmatched

before time βT and u keeps unmatched during the time [βT, t). Applying the similar argument in the proof

of Lemma 17, the probability of the second event is at least (1− 1
k′+1

)num.Hence we have Pr[E|k′, num]≥
qβα(1− 1

k′+1
)num. From the assumption that T is large, qβα(1− 1

k′+1
)num = qβα(1− 1

k′+1
)
(k′+1)· num

k′+1 ≈ qβαe
− num
k′+1 .

If we treat num
k′+1

as a whole, because of the convexity of the function e−x, Pr[E]≥ qβαE[e
− num
k′+1 ]≥ qβαe

−E[ num
k′+1

]
.

It suffices to show E[ num
k′+1

] ≤ t−βT
T

. The term E[ num
k′+1

] can be upper bounded by E[num] 1
E[k′]

following the

same procedure in the proof of Lemma 17. �

We now come back to the proof of Lemmas 8 and 9.

Lemma 8. The expected reward during the heavy maximum matching phase is at least qβαf
η
β ·OPTH , where

fηβ is defined as:

fηβ =


1
D

(h+β) ln h+η
h+β

, η≤ 1−h
1
D

(h+β)(ln 1
h+β

+ 1− e1−h−η), η > 1−h≥ β
1
D

(1− e−(η−β)), β > 1−h.
Proof By applying Lemma 15, the expected reward RHeavy max during the maximum matching phase

is at least

RHeavy max ≥
∫ ηT

βT

∑
v∈V

λv ·
OPTH

D ·T
∑

v∈V λv
·Pr[E]dt=

OPTH

D

∫ ηT

βT

1

T
·Pr[E]dt,

where E is the event that the corresponding offline vertex u of the online item i arriving at time t is

unmatched before time t. We can utilize Lemma 16 for η ≤ 1− h, Lemmas 16 and 17 for β ≤ 1− h < η and

Lemma 18 for β > 1−h to get the required lower bound of Pr[E]. Specifically,

Pr[E]≥


qβα ·

(h+β)T

hT+t
, η≤ 1−h

qβα ·
(h+β)T

hT+t
, η > 1−h≥ β,βT ≤ t < (1−h)T

qβα(h+β)e−
t−(1−h)T

T , η > 1−h≥ β, (1−h)T ≤ t < ηT
qβαe
− t−βT

T , β > 1−h.
Then, we calculate the corresponding integration value and get the result.

When η≤ 1−h, we have:

RHeavy max ≥ 1

D
OPTH

∫ ηT

βT

1

T
qβα

(h+β)T

hT + t
dt

= qβα
1

D
OPTH ((h+β) ln(hT + t))|ηTβT

= qβα
1

D
(h+β) ln

h+ η

h+β
OPTH .

When η > 1−h≥ β, we have:

RHeavy max ≥ 1

D
OPTH

(∫ (1−h)T

βT

1

T
qβα

(h+β)T

hT + t
dt+

∫ ηT

(1−h)T

1

T
qβα(h+β)e−

t−(1−h)T
T dt

)

= qβα
1

D
(h+β) OPTH

(∫ (1−h)T

βT

1

T

T

hT + t
dt+

∫ ηT

(1−h)T

1

T
e−

t−(1−h)T
T dt

)

= qβα
1

D
(h+β) OPTH

(
(ln(hT + t))|(1−h)T

βT
+
(
−e−

t−(1−h)T
T

)∣∣∣ηT
(1−h)T

)
= qβα

1

D
(h+β)

(
ln

1

h+β
+ 1− e1−h−η

)
OPTH .
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When β > 1−h, we have:

RHeavy max ≥ 1

D
OPTH

∫ ηT

βT

1

T
qβαe
− t−βT

T dt

= qβα
1

D
OPTH

∫ ηT

βT

1

T
e−

t−βT
T dt

= qβα
1

D
OPTH

(
−e−

t−βT
T

)∣∣∣ηT
βT

= qβα
1

D
(1− e−(η−β)) OPTH .

�

Lemma 9. Given the fact that bin u contains no items before the heavy maximum matching phase, the

probability of the event E that bin u is not packed any item during the heavy maximum matching phase is at

least

qηβ =


h+β
h+η

, η≤ 1−h
(h+β)e1−h−η, η > 1−h≥ β
e−(η−β), β > 1−h.

Proof By applying Lemmas 16, 17 and 18, conditioning on the event that bin u contains no items

before the heavy maximum matching phase, we can set t as ηT and get our statement. �

B.5. Proof of Lemmas 10 and 11

Before the proof, we first present two additional lemmas.

Lemma 19. The expectation of the optimal value of LPL
0 (λ̂, T ′, C̄) is lower bounded by qβαq

η
β

1−η
1+∆′

OPTL.

Proof From Lemma 4, the optimal value of LPL
0 (λ, T,C) is an upper bound of the offline optimal OPT

in the original problem. It suffices to show the expectation of the optimal value of LPL
0 (λ̂, T ′, C̄) is lower

bounded by the product of qβαq
η
β

1−η
1+∆′

and the optimal value of LPL
0 (λ, T,C). We assume the optimal solution

of LPL
0 (λ, T,C) is {y∗uv}. We next build the corresponding solution of LPL

0 (λ̂, T ′, C̄) for each realization C̄

to show the statement.

For a realization C̄, we set the value of {yuv} for each bin u. If the bin u contains no item before the light

phase, we set 1−η
1+∆′

y∗uv for each v ∈ V as the value of the corresponding yuv of LPL
0 (λ̂, T ′, C̄). Otherwise, if

the bin u contains some items before the light phase, we set 0 for each v as the value of the corresponding

yuv.

We can first check such a solution is feasible for LPL
0 (λ̂, T ′, C̄). For Constraints (3a),

∑
u∈U,(u,v)∈EL yuv ≤∑

u∈U,(u,v)∈EL
1−η

1+∆′
y∗uv ≤ 1−η

1+∆′
λvT ≤ λ̂vT ′. Here, the first inequality is from the fact that some values will be

set as 0, while the second inequality is from Constraints (3a) for LPL
0 (λ, T,C). The last inequality is from

the definition of T ′ and λ̂.

For Constraints (3b), since only the value for the bin u that contains no item before the light phase can

remain nonzero, where C̄d
u = Cd

u, and the coefficient 1−η
1+∆′

≤ 1, by Constraints (3b) for LPL
0 (λ, T,C), these

constraints hold under our given solution.

Now we can compare the optimal values. Assuming a set U ′ which contains only the bins without heavy
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items, Pr[U ′] is the corresponding probability, then the expectation of the optimal value of LPL
0 (λ̂, T ′, C̄) is

equal to ∑
U′

Pr[U ′]
∑

u∈U′,v∈V,(u,v)∈EL

wuv
1− η

1 + ∆′
y∗uv =

1− η
1 + ∆′

∑
u∈U,v∈V,(u,v)∈EL

wuvy
∗
uv

∑
U′:u∈U′

Pr[U ′]

≥ qβαq
η
β

1− η
1 + ∆′

OPTL .

The inequality is from Lemma 4 and the definition of qβαq
η
β in Lemmas 6 and 9. �

Lemma 20. Conditioning on an offline bin u is not packed any item before time η ·T , for t∈ [η ·T, θ ·T ),

the probability of the event E that u is available after η · T before time t is weakly larger than 1− 2Dγ′(1 +

∆′) t−ηT
(1−η)T .

Proof Let Zdut denote the consumed capacity of u’s d-th dimension by time t.

Pr[E] = Pr[∧d∈[D](C
d
u−Zdut)≥

1

2
Cd
u]

= 1−Pr[¬∧d∈[D] (Cd
u−Zdut)≥

1

2
Cd
u]

= 1−Pr[∨d∈[D](C
d
u−Zdut)<

1

2
Cd
u]

≥ 1−
∑
d∈[D]

Pr[(Cd
u−Zdut)<

1

2
Cd
u]

≥ 1−
∑
d∈[D]

Pr[Zdut >
1

2
Cd
u]

Here ∧,¬,∨ are logical “and”, “not” and “or”. According to Markov’s inequality, we have

Pr[Zdut >
1

2
Cd
u]≤ E[Zdut]

1
2
Cd
u

.

By the matching probability γ′ · ŷuv
λ̂vT ′

given in Step 28 of Algorithm 1, with Constraints (3b), we have

E[Zdut] =
∑
v∈V

λv(t− ηT )rduvγ
′ · ŷuv
λ̂vT ′

≤ (t− ηT )
γ′(1 + ∆′)

(1− η)T

∑
v

ŷuvr
d
uv ≤ (t− ηT )

γ′(1 + ∆′)

(1− η)T
Cd
u

Then combining all inequalities before, we can further bound the Pr[E]:

Pr[E]≥ 1−
∑
d∈[D]

Pr[Zdut >
1

2
Cd
u]

≥ 1−
∑
d∈[D]

E[Zdut]
1
2
Cd
u

≥ 1−
∑
d∈[D]

2γ′(1 + ∆′)
t− ηT

(1− η)T

≥ 1− 2Dγ′(1 + ∆′)
t− ηT

(1− η)T
.

�

We now prove our main lemmas in this section.

Lemma 10. The expected reward during the light LP phase is at least qβαq
η
βf

θ
η ·OPTL, where f θη is defined

as below:

f θη = (1− 2∆′)γ′(θ− η)

(
1−Dγ′(1 + ∆′)

θ− η
1− η

)
.
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Proof From the solution used in the proof of Lemma 19, under a given U ′ which contains all available

bins at the beginning of the light LP phase, we want to show our algorithm can reach a comparable guarantee

according to that solution. For a given U ′, the expected reward during the light LP phase RLight LP is at

least

RLight LP ≥
∫ θT

ηT

∑
v

(
λv
∑
u∈U′

wuv · γ′
ŷuv

λ̂vT ′
· (1− 2Dγ′(1 + ∆′)

t− ηT
(1− η)T

)

)
dt.

Here, the term γ′ ŷuv
λ̂vT ′

is the matching probability, and the term (1− 2Dγ′(1 + ∆′) t−ηT
(1−η)T ) is the available

probability of the bin u from Lemma 20. With some calculus, we can calculate its value, which is:

RLight LP ≥
∑

v∈V,u∈U′,(v,u)∈EL

wuvŷuv
λv

λ̂v
γ′
∫ θT

ηT

1

T ′
(1− 2Dγ′(1 + ∆′)

t− ηT
(1− η)T

)dt

≥
∑

v∈V,u∈U′,(v,u)∈EL

wuvŷuv(1−∆′)γ′
(

1

(1− η)T
(t−Dγ′(1 + ∆′)

(t− ηT )2

(1− η)T
)

)∣∣∣∣θT
ηT

=
∑

v∈V,u∈U′,(v,u)∈EL

wuvŷuv(1−∆′)γ′
θ− η
1− η

(1−Dγ′(1 + ∆′)
θ− η
1− η

).

Since the optimal value of LPL
0 (λ̂, T ′, C̄) is exactly

∑
v∈V,u∈U′,(v,u)∈EL wuvŷuv and LPL

0 (λ̂, T ′, C̄) ≥

qβαq
η
β

1−η
1+∆′

OPTL (Lemma 19), we can further lower bound RLight LP:

RLight LP ≥
∑

v∈V,u∈U′,(v,u)∈EL

wuvŷuv(1−∆′)γ′
θ− η
1− η

(
1−Dγ′(1 + ∆′)

θ− η
1− η

)

≥ (1−∆′)γ′
θ− η
1− η

(
1−Dγ′(1 + ∆′)

θ− η
1− η

)
qβαq

η
β

1− η
1 + ∆′

OPTL

≥ qβαq
η
βf

θ
η ·OPTL

where f θη = (1− 2∆′)γ′(θ− η)
(

1−Dγ′(1 + ∆′) θ−η
1−η

)
. Last inequality is because 1−∆′

1+∆′
≥ 1− 2∆′. �

Lemma 11. Conditioning on the event that bin u has not been packed any item before the light LP phase,

the expected consumption of this bin in d-th dimension for each d∈ [D] is at most γ′(1 + ∆′) θ−η
1−ηC

d
u. That is,

qθη = γ′(1 + ∆′) θ−η
1−η .

Proof From the upper bound of the term E[Zdut] given in the proof of Lemma 20, by setting t= θT , we

can prove our statement. �

B.6. Proof of Lemma 12

This lemma holds from the following lemmas.

Lemma 21. E[w`]≥ OPTL

T
∑
v∈V λv

.

Proof Before we start our proof, we first need to show the following claim holds.

Claim. If we denote the total number of arrivals during a time horizon and the expected value of LPL
1 given

the total number of arrivals is x and f(x), respectively, then f(x)

x
is a decreasing function.

Such property holds because of the following reasons. Since the number of arrivals are fixed, the Poisson

arrival model can be seen as following independent and identical distributions, where the probability of each

type v is proportional to the arrival rate λv. Under this model, since all arrivals are identical in expectations,
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it suffices to show removing the last arrival can still satisfy the constraints of LPL
1 . For an optimal solution

{yuv} of LPL
1 (V ′), we can show {yuv : v 6= v′} is a feasible solution of LPL

1 (V ′ − {v′}), where v′ is the last

arrival. This obviously holds for Constraints (4a) and (4c). For Constraints (4b), only the left-hand side can

be decreased, so they still hold. We now finish the proof of the claim.

For the lemma, we adopt the ideas behind the proof of Lemma 15 and prove our statements. We denote

the size of the set V ′ (Step 33) by k and the optimal value of LP (4) by OPT′. Since each vertex in V ′

arrives in the system in the same way, by symmetry, if we fix the size |V ′| of the set V ′ as k′, we have

E[w`| |V ′|= k′] = E[OPT′ | |V ′|=k′]
k′

.

We then assume the time horizon corresponding to V ′ is T ′. If T ′ <T corresponding to the case t < (1−h)T

in Step 33, we denote the set of the arriving vertices in the following time horizon of T −T ′ by V ′′. For each

realization of V ′′, if OPT′′ is the optimal value of LPL
1 (V ′ ∪V ′′), E[OPT′ | |V ′|=k′]

k′
≥ E[OPT′′ | |V ′|=k′,V ′′]

k′+|V ′′| , from

the claim above. We then assume the size of V ′′ is k′′ and take expectations over all V ′′ with the same size,

we have E[OPT′ | |V ′|=k′]
k′

≥ E[OPT′′ | |V ′|=k′,|V ′′|=k′′]
k′+k′′

. If we take the expectations over all possible k′ and k′′, we

denote the set of arriving vertices in the time interval [0, T ) as V , and we have E[w`] ≥ E[E[OPTL | |V |=k]

k
],

where the outside expectation in the right-hand side if taken over k. This is because OPTL corresponds to

the optimal value of LPL
1 in a time horizon of exactly T . For the second case where T ′ = T corresponding to

t≥ (1−h)T in Step 33, we can directly get E[w`| |V ′|= k′] = E[OPT′ | |V ′|=k′]
k′

= E[OPTL | |V |=k]

k
, because both

V and V ′ is from a time horizon of T and sampled in the same way. We can also get E[w`]≥E[E[OPTL | |V |=k]

k
]

by expectation over k.

If suffices to show E[E[OPTL | |V |=k]

k
] ≥ OPTL

T
∑
v∈V λv

. If we treat k as the independent variable x and use the

above function f(x), following the same procedure in Lemma 15, we finish our proof. �

Lemma 22. When θT ≤ t < T , the probability of the event E that the corresponding edge ` chosen by

Step 34 in Algorithm 1 can be matched successfully conditioning on the corresponding bin u is not packed by

any item before ηT is at least
1− 2D(ln hT+t

hT+θT
+ qθη), θT ≤ t < (1−h)T, θ≤ 1−h

1− 2D(ln 1
h+θ

+ t−(1−h)T

T
+ qθη), (1−h)T ≤ t < T, θ≤ 1−h

1− 2D( t−θT
T

+ qθη), θT ≤ t < T, θ > 1−h.

Proof We can adopt some ideas used in the proof of Lemmas 16, 17 and 20 to prove this statement.

For the first case where θ ≤ 1− h and θT ≤ t < (1− h)T , we assume the total number of arrivals in time

[−hT, θT ) is w and the number of arrivals in time [−hT, t) is k. Because all arrivals are symmetric, we can

conclude the expectation of the consumption of bin u in the d-th dimension after the light LP phase is no

greater than
∑k

i=w+1
Cdu
i

. Combining with the expectation of the consumption during the light LP phase

shown in Lemma 11, the expectation of the total consumption is at most
∑k

i=w+1
Cdu
i

+ qθηC
d
u. By applying

the union bound and Markov’s inequality, the probability of the event E′ (which can imply E) that the

consumption of bin u in each dimension does not exceed a half of the corresponding capacity entry is at

least Ek,w[1−
∑k

i=w+1
2D
i
− 2Dqθη]≥ 1− 2D(ln hT+t

hT+θT
+ qθη). The inequality is because the sum can be upper

bounded by ln k
w

, where the logarithmic function is a concave function and the expectation of k
w

is the ratio

between the corresponding time horizon, by the symmetric argument used in the proof of Lemma 16.
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For the second case where θ ≤ 1− h and (1− h)T ≤ t < T . We assume the total number of arrivals in time

[−hT, θT ) is w, the number of arrivals in time [−hT, (1− h) · T ) is k and the number of arrivals in time

[(1− h) · T, t) is num. We can also conclude that the expectation of the consumption of bin u in the d-th

dimension after the light LP phase is upper bounded by
∑k

i=w+1
Cdu
i

+
num·Cdu
k+1

. Thus, the total consumption

is at most
∑k

i=w+1
Cdu
i

+
num·Cdu
k+1

+ qθηC
d
u. Again with union bound and Markov’s inequality, the probability

of the event E′ is at least Ek,w,num[1−
∑k

i=w+1
2D
i
− 2D·num

k+1
− 2Dqθη]≥ 1− 2D(ln 1

h+θ
+ t−(1−h)T

T
+ qθη). Here,

the transformation from the term num
k+1

to t−(1−h)T

T
follows the same ideas as in the proof of Lemma 17.

For the last case where θT ≤ t < T and θ > 1−h. We assume the number of arrivals in time [−hT, (1−h) ·T )

is k and the number of arrivals in time [θ ·T, t) is num. With the similar idea above, the total consumption

is at most
num·Cdu
k+1

+ qθηC
d
u. Thus, the probability of the event E′ is at least Ek,num[1− 2D·num

k+1
− 2Dqθη] ≥

1− 2D( t−θT
T

+ qθη). �

According to the lemmas above, we can prove Lemma 12.

Lemma 12. The expected reward during the light maximum packing phase is at least qβαq
η
βf

1
θ ·OPTL where

f1
θ is

f1
θ =

{
(1 + 2D)(1−h− θ) + 2D ln(h+ θ) +h(1 + 2D ln(h+ θ)−Dh)− 2D(1− θ)qθη, θ≤ 1−h
(1− θ)(1−D(1− θ))− 2D(1− θ)qθη, θ > 1−h.

Proof The expected reward RLight max during this phase can be calculated by

RLight max =

∫ T

θT

∑
v∈V

λv ·
OPTL

T
∑

v
λv
· qβαq

η
βPr[E]dt= qβαq

η
β OPTL

∫ T

θT

1

T
·Pr[E]dt.

Here, the term
∑

v∈V λv represents the arrival rate for any online type, the term OPTL

T
∑
v λv

is the bound of the

weight of one matching edge from Lemma 21, and the last term qβαq
η
βPr[E] represents the probability that

the chosen edge can be matched successfully. Pr[E] is the probability mentioned in Lemma 22, which should

be further categorized for the following calculation. According to the corresponding lower bound of Pr[E],

we can calculate RLight max. For the first case when θ≤ 1−h, we have:

RLight max

≥ qβαq
η
β OPTL

(∫ (1−h)T

θT

1

T
(1− 2D(ln

hT + t

hT + θT
+ qθη))dt+

∫ T

(1−h)T

1

T
(1− 2D(ln

1

h+ θ
+
t− (1−h)T

T
+ qθη))dt

)

= qβαq
η
β OPTL

((
t

T
(1− 2Dqθη)− 2D

hT + t

T
(ln

hT + t

hT + θT
− 1)

)∣∣∣∣(1−h)T

θT

+

(
t

T
(1− 2D(ln

1

h+ θ
+ qθη))−D

(t− (1−h)T )2

T 2

)∣∣∣∣T
(1−h)T

)

= qβαq
η
β OPTL

(
(1− 2Dqθη)(1− θ) + 2Dh ln(h+ θ)− 2D(ln

1

h+ θ
− 1)− 2D(h+ θ)

)
= qβαq

η
β

(
1 + 2D)(1−h− θ) + 2D ln(h+ θ) +h(1 + 2D ln(h+ θ)−Dh)− 2D(1− θ)qθη

)
OPTL .

For the second case when θ > 1−h, we have:

RLight max ≥ qβαq
η
β OPTL

(∫ T

θT

1

T

(
1− 2D(

t− θT
T

+ qθη)

)
dt

)
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= qβαq
η
β OPTL

(
t

T
(1− 2Dqθη)−D

(t− θT )2

T 2

)∣∣∣∣T
θT

= qβαq
η
β OPTL((1− θ)(1− 2Dqθη)−D(1− θ)2)

= qβαq
η
β((1− θ)(1−D(1− θ))− 2D(1− θ)qθη) OPTL .

�

B.7. Proof of Theorem 1

Theorem 1. Denote N = minv∈V λv · T . For 0 < δ < 1, by choosing phase parameters α, β, η and θ,

and scaling parameters γ and γ′ satisfying 0≤ α≤ β ≤ η ≤ θ ≤ 1 and 0≤ γ, γ′ ≤ 1, with probability at least

1− 2mδ−me
−(h+α)N

8 −me
−(h+η)N

8 , Algorithm 1 has a competitive ratio of at least

max
α,β,η,θ,γ,γ′

min{FH , FL}

where

FH = fβα +


qβα · 1

D
(h+β) ln h+η

h+β
, η≤ 1−h

qβα · 1
D

(h+β)(ln 1
h+β

+ 1− e1−h−η), β ≤ 1−h< η
qβα · 1

D
(1− e−(η−β)), 1−h< β,

FL =


qβα · h+β

h+η
·
(
f θη + f1

)
, θ≤ 1−h

qβα · h+β
h+η
·
(
f θη + f2

)
, η≤ 1−h< θ

qβα · (h+β)e1−h−η ·
(
f θη + f2

)
, β ≤ 1−h< η

qβα · e−(η−β) ·
(
f θη + f2

)
, 1−h< β.

Here {
fβα = 1

D
(1− 3∆)(1−α)(1− qβα),

qβα = e−γ(1+∆) β−α
1−αD,∆ =

√
8ln 1

δ

(h+α)N
,{

f θη = (1− 2∆′)γ′(θ− η)(1−Dγ′(1 + ∆′) θ−η
1−η ),

qθη = γ′(1 + ∆′) θ−η
1−η ,∆

′ =
√

8ln 1
δ

(h+η)N
,{

f1 = (1 + 2D)(1−h− θ) + 2D ln(h+ θ) +h(1 + 2D ln(h+ θ)−Dh)− 2D(1− θ)qθη,
f2 = (1− θ)(1−D(1− θ))− 2D(1− θ)qθη.

Proof Since we can directly summarize Lemmas 5, 7, 8, 10 and 12 to get the values of competitive

ratio under different choices of the phase parameters, it suffices to show the assumptions (1−∆) · λ̂v ≤ λv ≤

(1 + ∆) · λ̂v and (1−∆′) · λ̂v ≤ λv ≤ (1 + ∆′) · λ̂v are satisfied in the corresponding phases with the given

probability in the statement of the theorem.

For the heavy LP phase, the assumption that (1−∆) · λ̂v ≤ λv ≤ (1 + ∆) · λ̂v holds for all v ∈ V is needed.

From Lemma 1, we get the event that the number of arrivals of type v is at least 1
2
(h+α)λvT for a v ∈ V

holds with a probability of at least 1− e−
λv(h+α)T

8 ≥ 1− e−
(h+α)N

8 . Conditioning on the event above, from

Lemma 2, with probability 1 − δ, (1 − c) · λ̂v ≤ λv ≤ (1 + c) · λ̂v holds for a v ∈ V , where c =

√
4 ln 1

δ

n
≤√

4 ln 1
δ

1
2

(h+α)λvT
≤
√

8 ln 1
δ

(h+α)N
= ∆. By union bound over all v ∈ V , we can finally get the assumption holds for

the heavy LP phase with a probability of at least 1−mδ−me−
(h+α)N

8 .

The case for the light LP phase is similar, where we replace ∆ and α by ∆′ and η respectively, and then we

get the assumption (1−∆′) · λ̂v ≤ λv ≤ (1 + ∆′) · λ̂v holds with a probability of at least 1−mδ−me−
(h+η)N

8 .
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For the heavy maximum matching phase and light maximum packing phase, since there is no requirement

for the estimation, no additional analysis of the probability is needed.

Thus, by union bound over all four phases, we can summarize the probability mentioned in the statement.

�

Appendix C: Missing proofs in Section 4

C.1. Proof of Proposition 1

Proposition 1. Denote N = minv∈V λv · T . When h = 0 and N is large, for 0 < δ < 1, by setting α =

C0N
− 1

3 , β = 0.935 2D
2D+1

, η= θ= 2D
2D+1

, γ = 0.084 2D+1
D2 , where C0 is a constant such that α satisfies 3

√
8ln 1

δ

αN
=

α, with probability at least 1−mδ−me
−(h+α)N

8 , the competitive ratio of Algorithm 1 is at least

(1−C3N
− 1

3 ) · e
−0.225

4D+ 2
,

where C3 is a specific constant defined in the proof.

Proof We first assume η = θ, i.e., no light LP phase. Then we choose α=C0N
− 1

3 � 1 where C0 is a

constant that α satisfies 3

√
8ln 1

δ

αN
= α, i.e., 3∆ = α. We rewrite the ratio min{FH , FL} in Theorem 1 where

FH = 1
D

(1− 3∆)(1− α)(1− qβα) + qβα
1
D
β ln η

β
, FL =

qβαβ

η
((1 + 2D)(1− η) + 2D lnη) and qβα = e−Dγ(1+∆) β−α

1−α .

We set e−γβDβ
η

= e−b, η = θ = 2D
2D+1

and z = γβD similar to Theorem 3 in Naori and Raz (2019), and we

assume β� α (later we will easily verify this). To find a useful lower bound, we need to find out the order

of infinitesimal terms (α), ignore these terms to tune the rest part, and finally add the infinitesimal terms

back to get the lower bound.

First we find an approximation of qβα. qβα ≈ e
−z(1+∆)(1−α

β
)(1+α) ≈ e−z(1 − z(∆ + α − 1

β
α)) = e−z(1 − C1α)

where C1 satisfies C1α= z(∆ +α− 1
β
α). These approximations are according to the infinitesimals ∆ and α,

and e−x ≈ 1−x when x is small.

Then FL ≈ e−zβ
η

(1−C1α)((1 + 2D)(1− η) + 2D lnη) = (1−C1α) · e−b(1− 2D ln(1 + 1
2D

)). This is because

the choices of η and b. Then according to the fact that ln(1 + x) ≤ x − 1
2
x2 + 1

3
x3 when x > 0, we have

1− 2D ln(1 + 1
2D

)≥ 1
4D2 − 1

12D2 . Further, it is easy to check that 1
4D2 − 1

12D2 ≥ 1
4D+2

when D ≥ 1. Now we

have

FL ≥ (1−C1α) · e−b

4D+ 2
.

Then we consider the approximation of FH = 1
D

(1− 3∆)(1−α)(1− qβα) + qβα
1
D
β ln η

β
.

FH =
1

D
(1− 3∆)(1−α)(1− qβα) + qβα

2

2D+ 1
e−bez(−z+ b)

≥ 1

D
(1− 2α)(1− e−z(1−C1α)) + (1−C1α)

2

2D+ 1
e−b(−z+ b).

≥ (1−C2α) ·
[

1

D
(1− e−z) +

2

2D+ 1
e−b(−z+ b)

]
.

The first equation is because β = ηe−bez and η= 2D
2D+1

, the first inequality is because qβα ≈ e−z(1−C1α) and

(1− 3∆)(1−α) = (1−α)2 ≥ 1− 2α, and last inequality holds if we set C2 = 2 +C1.

Now considering FL and FH have the same order of infinitesimal term, i.e., 1−C1α and 1−C2α, we ignore

these infinitesimal terms and try to solve the following optimization problem:

max
z,b

min

{
e−b

4D+ 2
,

1

D
(1− e−z) +

2

2D+ 1
e−b(−z+ b)

}
.
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Then we try to find z and the minimum b such that 1
D

(1−e−z)+ 2
2D+1

e−b(−z+ b)≥ e−b

4D+2
holds, which gives

a lower bound of the optimization problem before. To get this, it suffices to show eb(1− e−z) + b− z ≥ 1
4
.

We set b = 0.225 and z = 0.158, then β = e−b

e−z
η = 0.935η = 0.935 2D

2D+1
and γ = z

βD
= 0.084 2D+1

D2 . We can

summarize our final competitive ratio with infinitesimal term as

(1−C3N
− 1

3 ) · e
−0.225

4D+ 2

where C3 = max{C1,C2} ·C0. �

C.2. Proof of Proposition 2

Proposition 2. Denote N = minv∈V λv ·T . For 0< δ < 1, by setting α=C0N
− 1

3 , β = η= η1, θ= 1, γ = 1

and γ′ = 1
2D

, where C0 is a constant such that α satisfies 3

√
8ln 1

δ

αN
= α and η1 is the solution of eDη = 5−η

4
,

with a probability of at least 1− 2mδ −me
−(h+α)N

8 −me
−(h+η)N

8 , the competitive ratio of Algorithm 1 is at

least
1

D
· 1− η1

5− η1

· (1−C3N
− 1

2 (h+C0N
− 1

3 )−
1
2 ),

where C3 is a specific constant defined in the proof.

Proof We consider the parameter settings that β = η and θ = 1, i.e., there is no heavy maximum

matching phase or light maximum packing phase. We choose α= C0N
− 1

3 � 1 where C0 is a constant that

α satisfies 3

√
8ln 1

δ

αN
= α. Now we rewrite the ratio min{FH , FL} in Theorem 1 where FH = 1

D
(1− 3∆)(1−

α)(1− e−γ(1+∆) η−α
1−αD) and FL = e−γ(1+∆) η−α

1−αD · (1− 2∆′)γ′(1− η)(1−Dγ′(1 + ∆′)). Under the assumption

that T is large, we ignore the high order of infinitesimal to make the expression clear.

For FH , we first look at the term (1− 3∆)(1− α)≈ 1− (3∆ + α). We can compare the order between the

term ∆ and α. If h is in an order higher than N−
1
3 , we can approximate 3∆ +α by 3∆, otherwise, we can

find 3∆ and α is in the same order N−
1
3 . Thus, to summarize these two cases, the term can be approximated

by 1−C1N
− 1

2 (h+C0N
− 1

3 )−
1
2 where C1 is a constant that satisfies 3∆+α=C1N

− 1
2 (h+C0N

− 1
3 )−

1
2 . For the

term e−γ(1+∆) η−α
1−αD, we can approximate it as e−γ(1+∆) η−α

1−αD ≈ e−Dγ(1+∆)(η−α)(1+α) ≈ e−Dγ(η+η(∆+α)−α) ≈

e−γηD ·e−γηD(∆+α−α
η

) ≈ e−γηD(1−γηD(∆+α− α
η

)). These approximations are according to the infinitesimal

∆ and α, and e−x ≈ 1−x when x is small. Thus, FH ≈ 1
D

(1− e−γηD)(1−C1N
− 1

2 (h+C0N
1
3 )−

1
2 ).

Similar for FL, we can have the same order of the infinitesimal. Adopting ∆′ ≤∆, we can have a constant

C2 such that FL ≥ e−γηD · γ′(1− η)(1−Dγ′)(1−C2N
− 1

2 (h+C0N
− 1

3 )−
1
2 ). To find a near optimal choice of

parameters, we ignore the infinitesimal term first. Then our problem is

max
η,γ,γ′

min

{
1

D
(1− e−γDη), e−γDη · γ′(1− η)(1−Dγ′)

}
Since γ′ only influences FL, we can choose γ′ = 1

2D
to maximize FL. Then we can update the competitive ratio

as maxη,γ min
{

1
D

(1− e−γDη), 1
4D
e−γDη(1− η)

}
. Observing that FH = 1

D
(1−e−γDη) and FL = 1

4D
e−γDη(1−η)

are increasing with respect to γ, we choose γ = 1. Then for the choice of η, since FH increases with η while

FL decreases with η, we choose the η that satisfies 1
D

(1− e−Dη) = 1
4D
e−Dη(1− η). That is, η = η1 satisfies

eDη1 = 5−η1
4

. It is easy to check that there only exists one η1 and this η1 is feasible. Then the ratio is 1
D
· 1−η1

5−η1
.

Then add back the infinity small part and choose C3 = max{C1,C2}, we have the wanted ratio. �
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C.3. Proof of Proposition 3

To prove this proposition, we need the following two lemmas.

Lemma 23. Given η ≤ 1− h, we have competitive ratio of at least 1
D

(h+ α) ln h+η
h+α

,when we set θ = η,

β = α and α= max
{

(h+ η)e−
Df1
h+η −h, (h+ η)e−1−h,0

}
. Here f1 = (1− (h+ η))(1 + 2D) + 2D ln(h+ η) +

h(1 + 2D ln(h+ η)−Dh).

Proof We first assume that FH ≥ FL, according to η≤ 1−h, we have

FH ≥ FL ⇐⇒ α≤ α1 := (h+ η)e−
Df1
h+η −h.

When α1 ≥ 0 and α ≤ α1, the competitive ratio is FL = h+α
h+η
· f1. This ratio is increasing with α then

it is maximized when α = α1. We know that when α = α1, FL = FH , then the ratio can be written as

FH = 1
D

(h+α) ln h+η
h+α

. When α1 < 0, then we have α>α1 which means FL ≥ FH , then in this case we also

have competitive ratio FH . Thus, we only need to solve maxαF
H when α≥max{0, α1}. According to the

derivative of FH , we can easily see that when α≤ α2 = (h+η)e−1−h, the ratio is increasing while the ratio is

decreasing when α≥ α2. If α2 ≥max{0, α1}, the optimal α= α2. If α2 <max{0, α1}, then FH is decreasing

when α≥max{0, α1}, so we choose optimal α= max{0, α1}.

Then to summarize, the optimal α is α= max
{

(h+ η)e−
Df1
h+η −h, (h+ η)e−1−h,0

}
and the ratio is 1

D
(h+

α) ln h+η
h+α

. �

Lemma 24. Given η > 1−h, we have competitive ratio of at least{
1
D

(h+α)(ln 1
h+α

+ 1− e1−h−η), α1 ≤ 1−h
e1−h−η · f2, α1 ≥ 1−h

when we set θ= η, β = α and

α=

{
max{α1, α2,0} , α1 ≤ 1−h
1−h, α1 ≥ 1−h

Here f2 = (1− η)(1−D(1− η)), α1 = exp{1− (Df2 + 1)e1−h−η}−h and α2 = exp{−e1−h−η}−h.

Proof First recall the competitive ratio is min{FH , FL} where FH = 1
D

(h + α)(ln 1
h+α

+ 1 − e1−h−η),

FL = (h+α)e1−h−η ·f2 and f2 = (1−η)(1−D(1−η)). We first assume that FH ≥ FL, according to η > 1−h

we have

FH ≥ FL ⇐⇒ α≤ α1 := exp{1− (Df2 + 1)e1−h−η}−h.

When α1 ≥ 0 and α ≤ α1, the competitive ratio is FL = (h + α)e1−h−ηf2 which is increasing with α. If

α1 ≥ 1− h≥ 0, because we only consider α≤ 1− h, we always have FH ≥ FL, then the ratio is FL, and we

choose α = 1− h. If 0≤ α1 ≤ 1− h, we can choose α = α1, and we have FL = FH . When α1 < 0, then we

always have α>α1 which means the competitive ratio can be written as FH .

Now we only need to solve maxαF
H when α≥max{α1,0} and max{α1,0} ≤ 1− h. From the derivative of

FH = 1
D

(h+α)(ln 1
h+α

+ 1− e1−h−η), we can see that when α≤ α2 := exp{−e1−h−η}− h, FH is increasing,

and when α≥ α2, FH is decreasing. We can also have α2 ≤ 1−h. Then, we have the following cases:

1. α2 ≥max{α1,0}: set α= α2 = max{α1, α2,0};
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2. α2 ≤max{α1,0}: set α= max{α1,0}= max{α1, α2,0}.

By summarizing the cases above, we get our statement. �

We now come back to show the correctness of Proposition 3.

Proposition 3. Denote h0 as (2D2 + 1)(
√

1 + 1
4D2 −1) + 1

2D
. We can achieve the corresponding compet-

itive ratios under different choices of h. Specifically,

• if h≤ 1
2D

, by setting α= β = 2D
2D+1

(1+h)e
− f1(2D+1)

2(1+h) −h, η= θ= 2D
2D+1

(1+h)−h, we achieve a competitive

ratio of f1e
− f1(2D+1)

2(1+h) . Here, f1 = 1− 2Dh+ 2D(1 +h) ln
[

2D(1+h)

2D+1

]
+h−Dh2;

• if h ≥ h0, by setting α = β = 1 − h, η = θ = 2 − 1
2D
−
√

1 + 1
4D2 , we achieve a competitive ratio of

e1−h−η(1− η)(1−D(1− η));

• if 1
2D

<h<h0, by setting θ= η= 1− 1
2D

, β = α and

α=

{
max{α1, α2,0} , α1 ≤ 1−h
1−h, α1 ≥ 1−h,

where α1 = exp{1− 5
4
e

1
2D
−h}−h and α2 = exp{−e 1

2D
−h}−h, we achieve a competitive ratio of{

1
D

(h+α)(ln 1
h+α

+ 1− e 1
2D
−h), α1 ≤ 1−h

e
1

2D
−h 1

4D
, α1 ≥ 1−h.

Proof We first consider the case when h ≤ 1
2D

. According to Lemma 23, we know how to find the

optimal choice of α and the competitive ratio given η ≤ 1 − h. Here we choose η that maximize f1 =

(1 − (h + η))(1 + 2D) + 2D ln(h + η) + h(1 + 2D ln(h + η) −Dh). By calculus, we can find out that η =

2D
2D+1

(1 + h) − h. When h ≤ 1
2D

, we can verify that such η is no greater than 1 − h. Now we have f1 =

1−2Dh+2D(1+h) ln
[

2D(1+h)

2D+1

]
+h−Dh2. From Lemma 23, α= max

{
(h+ η)e−

Df1
h+η −h, (h+ η)e−1−h,0

}
.

Then we will show that α= (h+η)e−
Df1
h+η −h, i.e., (h+η)e−

Df1
h+η −h≥ (h+η)e−1−h and (h+η)e−

Df1
h+η −h≥ 0.

To show (h+ η)e−
Df1
h+η −h≥ 0 it suffices to show that (h+ η)e−

Df1
h+η ≥ h. Because ex > 1 +x, we only need to

show that h+ η−Df1−h≥ 0. Then given the value of η and f1, we denote

g(h) = η−Df1 =
2D

2D+ 1
− 1

2D+ 1
h+ (2D2−D)h+D2h2−D− 2D2(1 +h) ln

[
2D(1 +h)

2D+ 1

]
.

Now we only need to show that g(h)≥ 0 for 0≤ h≤ 1
2D

. We check the first order derivative g′(h) of g(h):

g′(h) =− 1
2D+1

−D+ 2D2h− 2D2 ln
[

2D(1+h)

2D+1

]
, and the second order derivative g′′(h) = 2D2(1− 1

1+h
)≥ 0.

Then g′(h)≤ g′
(

1
2D

)
=− 1

2D+1
≤ 0 which means

g(h)≥ g
(

1

2D

)
=

2D

2D+ 1
− 1

2D+ 1

1

2D
+ (2D2−D)

1

2D
+D2

(
1

2D

)2

−D

=
1

2D(2D+ 1)

[
(2D)2− 1 +D(4D2− 1) +D2 2D+ 1

2D
−D(2D+ 1)2D

]
=

1

2D(2D+ 1)

(
3D2− 1

2
D− 1

)
≥ 0.

Last inequality is because D is a positive integer. Now we have proved that (h + η)e−
Df1
h+η − h ≥ 0, then

we try to prove that (h+ η)e−
Df1
h+η − h ≥ (h+ η)e−1 − h. It suffices to show that −Df1

h+η
≥ −1 which equals

that h+ η −Df1 ≥ 0. Because we have proved that h+ η −Df1 − h ≥ 0 above, h+ η −Df1 ≥ 0 already
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satisfies. Then the choice of α is α= (h+η)e−
Df1
h+η −h= 2D

2D+1
(1 +h)e

− f1(2D+1)
2(1+h) −h and the competitive ratio

is 1
D

(h+α) ln h+η
h+α

= f1e
− f1(2D+1)

2(1+h) .

We then consider the second case where h≥ h0. From Lemma 24, considering the case that α1 ≥ 1− h,

the optimal α = 1 − h, and competitive ratio is e1−h−ηf2. This value is maximized when we choose η =

2− 1
2D
−
√

1 + 1
4D2 . Then we have f2 =

√
4D2 + 1− 2D and α1 = exp{1− (Df2 + 1)e1−h−η}−h. It is easy to

check that η≥ 1−h because

η− (1−h) = h+ 1− 1

2D
−
√

1 +
1

4D2
≥ h0 + 1− 1

2D
−
√

1 +
1

4D2
= 2D2

(√
1 +

1

4D2
− 1

)
≥ 0.

And η≤ 1 because η− 1 = 1− 1
2D
−
√

1 + 1
4D2 ≤− 1

2D
≤ 0. The first inequality is because

√
1 + 1

4D2 ≥ 1.

We have proved the feasibility of η, now we need to prove that α1 ≥ 1−h. It suffices to show that eh−(1−η) ≥

1+D(
√

4D2 + 1−2D). According to the fact ex > 1+x, we only need to prove that h+η≥ 1+D(
√

4D2 + 1−

2D). Then we need to prove that h≥ 1− η+D(
√

4D2 + 1− 2D) = (2D2 + 1)(
√

1 + 1
4D2 − 1) + 1

2D
= h0. The

statement holds because of our assumption.

We can also see that h0 ≤ 1 because

h0 = (2D2 + 1)(

√
1 +

1

4D2
− 1) +

1

2D
≤ (2D2 + 1)

1

8D2
+

1

2D
=

1

4
+

1

2D
+

1

8D2
≤ 1.

First inequality is because the fact
√

1 + a≤ 1 + 1
2
a for a≥ 0 and last inequality is obvious because D is a

positive integer. According to Lemma 24, the competitive ratio is e1−h−η(1− η)(1−D(1− η)).

For the last case where 1
2D

< h < h0, observing the choices of η in the case when h ≥ h0, to ensure the

optimal η which maximizes e1−h−ηf2 satisfying the assumption η > 1 − h, the condition that h ≥ h0 is

necessary. Thus, for the case where 1
2D

<h< h0, we choose the smallest η which keeps η > 1−h below. We

then adopt Lemma 24 and get our statement. �


