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Abstract

We study an online generalized assignment problem under a stochastic arrival
model. Items arrive in an online manner, following a known independent and
identical distribution. The demand associated with each arrival is stochastic and is
drawn from an unknown type-specific distribution. The demand is only revealed
after the resource allocation decision has been made. Upon the arrival of each online
item, two decisions need to be made: either pack it into an offline bin and deduce a
certain capacity, or reject it. Successful matches between offline bins and online
items result in variable rewards, which may differ for different matching pairs. The
objective is to maximize the total reward of the packing scheme while adhering
to capacity constraints. We utilize the idea of exploration-exploitation to derive
an algorithm that simultaneously learns about the demand and allocates online
items to offline bins. We present a non-asymptotic parametric guarantee when the
demand distributions are Bernoulli distributions. Finally, we conduct numerical
experiments to evaluate the effectiveness of our algorithm among different demand
distributions.

1 Introduction

Online generalized assignment problem (GAP) is a classical optimization problem in online resource
allocation. In this problem, we are presented with a collection of offline bins, each with its own
capacity, and a sequence of online items with varying demands. Upon the arrival of each online item,
we can allocate it to an available offline bin, which results in a reduction from the bin’s capacity
corresponding to the item’s demand. Alternatively, we can choose to reject the item irrevocably. Our
objective is to maximize the total reward without violating any bin capacity constraints.

In this paper, we study the online GAP under a stochastic arrival model. The arrival process is
assumed to follow a known independent and identical distribution (i.i.d.). The demand associated
with each arrival is drawn from an unknown type-specific distribution and is only revealed after a
resource allocation decision has been made. This problem setting is applicable in numerous real-world
scenarios. For example, in cloud computing, tasks are allocated to computers and require a certain
amount of processing time. However, the precise processing time is frequently undisclosed until
the task is executed. In ride-sharing, the online requests arrive randomly on the platform and each
request demands a random number of seats. However, the exact demand size remains unknown until
a vehicle is assigned to the request. In food delivery, delivery requests emerge randomly in the system
and each request may occupy a different capacity of the deliveryman’s vehicle. However, the specific
capacity consumed by each request is not revealed until the resource allocation decision is made.
In all of these scenarios, the demand for packing an item into a bin can only be observed after the
packing decision has been made, which is the setting to be explored in this paper.

There has been an increasing number of literature analyzing the stochastic demand model in the online
GAP [Alaei et al., 2013, Alaei, 2014, Jiang et al., 2022, Stein et al., 2020, Wang et al., 2022]. But
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most of them allow demand to be observed before making the packing decision. Alaei et al. [2013] is
the most related one. Specifically, they assume the demand distribution for packing each item type
into each bin is known before the online process, but the specific realization of the demand is only
learned after the item has been packed. They proposed a threshold algorithm with a competitive ratio
of 1 − 1√

k
, under the assumption that no item can consume more than 1

k of a bin’s capacity. Our
paper differs from Alaei et al. [2013] in the following perspectives. First, we assume the demand
distribution is unknown prior to the online process, which is in contrast to the assumption of known
demand distribution in Alaei et al. [2013]. Second, our arrival process is assumed to be i.i.d., whereas
their analysis only requires independence. To the best of our knowledge, this paper is the first to
solve the online GAP with unknown demand distribution.

It is worth highlighting that being able to accommodate unknown demand distribution makes a
significant contribution in practice. In many applications, the demand distribution is not known
in advance. For instance, consider a market with newly launched products, where limited data is
available to determine the demand distribution beforehand. Consequently, the distribution needs to
be learned during the online resource allocation process. Another example can be seen in online
advertising, where advertisers bid for ad placements on websites or search engines. The demand for
ad placements, as indicated by user clicks or impressions, is often unknown in advance. Advertisers
must make allocation decisions without precise knowledge of the demand distribution due to the
unpredictable nature of user behavior and engagement.

On the other hand, it is challenging to deal with the unknown demand distribution. Many existing
algorithms are designed under the assumption of either observed demand or pre-known demand
distribution. For instance, a commonly used large-small technique (see Feldman et al. [2021], Naori
and Raz [2019], Stein et al. [2020]) is to categorize items into large and small groups based on their
demand size and subsequently handle them differently. However, this approach is not applicable in
our model since the precise demand is not available until the packing decision is made.. Another
commonly employed idea is to reduce the original problem to variants of the magician problem.
This cannot be easily adapted to our model either due to its heavy dependence on known demand
distributions in the algorithm design and subsequent analysis (e.g., Alaei et al. [2013], Jiang et al.
[2022]). In general, the lack of knowledge regarding demand distribution makes it difficult to adapt
allocation strategies to unforeseen demand scenarios. In our paper, we tackle the challenge by
adopting the idea of exploration-exploitation to dynamically learn the demand distribution and guide
the packing decision.

Contributions. We summarize our main contributions as follows. In this paper, we study the online
GAP under a known independent and identically distributed arrival process, which is commonly
assumed in the literature of online resource allocation [Feldman et al., 2009, Huang et al., 2022, Jaillet
and Lu, 2014]. Each online arrival requests a random demand which is drawn from an unknown
type-specific distribution and generates a type-specific reward if being matched to a bin. Upon each
arrival, we need to make an immediate and irrevocable decision: whether to pack this item into a bin
or reject it outright. The specific demand of the present item can only be revealed after the decision
is made. Our goal is to maximize the total reward of the packing without violating the capacity
constraints.

In this setting, we adopt the idea of exploration-exploitation to first learn the demand distribution and
then leverage it to guide our packing decisions. If all demand distributions are Bernoulli distributions,
we present a parametric performance guarantee, as shown in Theorem 4.6. We further test our
algorithm on synthetic datasets. We introduce three heuristics derived from our main algorithm and
demonstrate their effectiveness by comparing them to a greedy benchmark. Importantly, we find that
these heuristics consistently perform well across a variety of demand distributions, indicating their
robustness and versatility.

Our work is the first to study the online GAP with unknown demand distribution. We derive a
multi-phase algorithm to learn demand (explore) and optimize the allocation decision (exploit). We
further provide a non-trivial analysis of the derived algorithm.

Related work. Online GAP has been widely studied in the recent years [Aggarwal et al., 2011,
Albers et al., 2020, Feldman et al., 2009, Jiang et al., 2022, Kesselheim et al., 2018]. Feldman et al.
[2009] is the first work to consider the online GAP problem and showed that there exists an algorithm
that can achieve a competitive ratio of 1 − 1

e under the free disposal assumption. Here, the free
disposal assumption means that we can allocate more items to a bin but only a subset of these items
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without violating the capacity constraint can gain a reward. Without free disposal, Aggarwal et al.
[2011] demonstrated that there is no online algorithm with a positive competitive ratio if the arrival
order of the online items is determined by an adversary. Some other studies consider a random order
arrival, where the arriving order of online items is assumed to be uniformly selected from all possible
permutations. In this context, Albers et al. [2020] introduced a randomized algorithm that achieves a
competitive ratio of 1

6.99 , which improves the ratio 1
8.06 proposed by [Kesselheim et al., 2018]. To

the best of our knowledge, it is the best ratio under the random arrival model.

Note that the aforementioned works assume a deterministic demand for each online item. Recently,
some studies have started to consider stochastic demands under a stochastic arrival model. In this
setting, the reward and demand associated with packing each arriving item follow a known joint
distribution, and the specific reward and demand pair for each item is revealed upon its arrival,
before a resource allocation decision has been made. Jiang et al. [2022] introduced an algorithm that
achieves a tight performance guarantee of 1

3+e−2 under this setting.

Some other works study the online GAP under the setting that we can only learn the demand
realization after packing the item or rejecting it [Alaei et al., 2013, Bhalgat, 2011, Xu, 2022], which
is the problem setting considered in this paper. Among them, Alaei et al. [2013] is the most related
one. They also study a stochastic demand model but they assume demand distribution is known
in advance, whereas our paper specifically addresses the challenge of dealing with an unknown
demand distribution. Under the stochastic arrival model, Alaei et al. [2013] reduced the problem to a
generalized magician problem (GMP) and proposed a threshold algorithm that achieves a competitive
ratio of 1− 1√

k
, under the assumption that each online item can take at most 1

k fraction of any bin’s
capacity. If every bin has k-unit capacity and the demand follows a Bernoulli distribution, Alaei
[2014] reduced the problem to a standard magician problem (MP) and established a competitive ratio
of 1− 1√

k+3
. We adopt their reduction idea in our analysis. Specifically, we also consider reducing

our original problem to GMP. However, the unknown demand distribution adds significant complexity
to the analysis. The algorithms for the classical GMP or MP used in Alaei et al. [2013], Alaei [2014]
heavily depend on having full knowledge of the demand distributions, which is not available to us.
To tackle this challenge, we employ the idea of exploration-exploitation to dynamically learn the
demand distribution and guide our packing decisions. The integration of the exploration-exploitation
framework into GMP/MP introduces substantial intricacies to the analysis.

2 Preliminaries

We first introduce some notations and abbreviations in this paper. Let [m] denote the set of
{1, 2, · · · ,m} where m is a positive integer. We use “CDF” to represent the cumulative distri-
bution function and “LP” to denote the linear program.

We consider an online stochastic generalized assignment problem (GAP) with unknown demand,
where we need to allocate online items to offline bins while the demand of each item is revealed
after a packing decision is made. Denote U as the set of offline bins, and each bin u ∈ U has an
initial capacity of cu units. We assume all capacities cu are integers at least 2 since Proposition 1 in
Alaei et al. [2013] has demonstrated the impossibility of achieving a positive ratio when the capacity
is equal to 1 even with known demand distribution. Let V denote the set of online item types. We
assume that each arriving item is sampled from V according to a known independent and identically
distributed (i.i.d.) arrival process.

Suppose there are T periods in total. At each period t ∈ [T ], we sample an item of type v with
probability pv where

∑
v∈V pv = 1 and the probabilities {pv} are known to us. After the arrival of

the tth item, which is of type v, we need to decide whether to allocate it to an offline bin or reject
the item immediately and irrevocably. The demand of the item d′t will be revealed according to an
unknown distribution Dv only after the decision has been made. If we reject the item, we will not
get any reward. If the item of type v is allocated to bin u and d′t is not larger than the remaining
capacity of u, the allocation is successful. Then the capacity of u is deducted by d′t, and we will earn
a non-negative reward ruv , which is known to us. But if the remaining capacity of the allocated bin is
smaller than d′t, the allocation is failed. As a result, we get zero reward and the capacity of u remains
unchanged. The objective is to maximize the total reward in the total time horizon of T . For ease
of notation, we denote the number of offline bins and the number of online item types by n and m,
respectively.

3



The demand distribution Dv of each online type v is unknown to us. But without loss of generality,
we assume the support of Dv is a subset of [0, 1] and expected value is dv which is also unknown.
For the sake of analysis, we further assume there exists a known constant d > 0 such that dv ≥ d for
each v ∈ V .

Competitive Ratio. We use the competitive ratio to measure the performance of an algorithm. Let
ALG(I) denote the expected total reward given by an online algorithm ALG for a problem instance
I of our model. The expectation is taken over the random arrivals of the items, the revealed random
demand of each item, and the randomized (if needed) algorithm. The benchmark is the offline optimal
algorithm OPT which knows the online arrivals and demands at the beginning and maximizes the
total reward. Similarly, we use OPT(I) to denote the total expected reward achieved by OPT for the
instance I . The competitive ratio of ALG is defined as the minimum ratio of ALG(I) over OPT(I)
among all instances of our model. For simplicity of the notation, we will drop I in the following
analysis when there is no ambiguity, e.g., let OPT denote the total expected reward by the offline
optimal algorithm.

Linear Program Benchmark. We use the following linear program (LP) (1) to assist the competitive
ratio analysis.

max
∑

u∈U,v∈V
ruvxuv (1)

s.t.
∑
u∈U

xuv ≤ pvT, ∀v ∈ V, (1a)∑
v∈V

dvxuv ≤ cu, ∀u ∈ U, (1b)

xuv ≥ 0, ∀u ∈ U, v ∈ V, (1c)

where xuv are the decision variables and denote the expected number of matches between u and v.
Constraints (1a) impose an upper bound on the number of matches for type v, which is determined
by the expected number of arrivals of type v during the total time horizon of T . Constraints (1b) are
the capacity constraints for offline bins. The objective is to maximize the expected total reward. To
facilitate the subsequent algorithm design, we use LP (d, T ) to represent the above LP which allows
us to modify the expected values of demand and the total time horizon of T . In the following lemma,
we show that the optimal value of LP (1) is an upper bound of OPT. This lemma can be proved
following a similar idea as in the proof of Theorem 1 in Alaei et al. [2013]. But due to the page limits,
we defer all the proofs in this paper to the appendix.
Lemma 2.1. The optimal value of LP (1) is an upper bound of the offline optimal OPT.

Note that the expected demand dvs are unknown to us, hence LP (1) can not be computed accurately.
We need to invoke Lemma 2.2 to estimate the mean of an unknown distribution, based on which we
will show how to estimate this LP later in Section 4.
Lemma 2.2 (Estimation of Mean, [Hoeffding, 1994]). Suppose X1, . . . , Xt are independent and
identically distributed random variables with the expectation µ taking values in [0, 1]. Denote X̄ as
the average of X1, . . . , Xt. For any δ > 0, Pr[X̄ ≥ (1 + δ)µ] < e−2δ

2µ2t.

This lemma can be shown using Hoeffding’s inequality by setting the range of the support to [0, 1].

3 Modified GMP

In this section, similar to Alaei et al. [2013], we first consider a subroutine of our algorithm, which is
a modified version of the generalized magician problem.
Definition 3.1 (modified Generalized Magician Problem (modified GMP)). The modified GMP is
defined as follows. Given a planning horizon of T and a bin of capacity k, the goal is to establish
an allocation policy for the online arriving items. For each time t ∈ [T ], an item arrives whose
demand Yt is unknown but follows a fixed distribution D taking values in [0, 1]. The distribution D
is unknown to us. But we can estimate a distribution D̃ supported in [0, 1] satisfying the following
conditions: (1) FD̃(x) ≤ FD(x) for all x; (2) T · E[X] ≤ k, where X follows D̃. After each arrival,
we need to decide whether to pack the item into a bin or reject it. The item can only be accepted to a
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bin if the bin has at least one unit of capacity remaining. The realization yt of Yt is only revealed
after the decision is made, and if the item is accepted, the bin’s capacity will be reduced by yt.

In contrast to the GMP used in Alaei et al. [2013], our modified GMP does not assume any knowledge
about the actual demand distribution D. As a result, the previous algorithm and its performance
guarantee cannot be directly applied to our model. Therefore, we need to develop a new procedure
to effectively address this problem. We first introduce an additional notation here. If a specific
procedure ensures that every item can be allocated with a probability of at least γ, we call this a
γ-conservative magician or the conservative ratio of this procedure is γ. We next introduce how to
find a γ-conservative magician for our modified GMP.

Inspired by Alaei et al. [2013], we design the following procedure called modified γ-magician, where
γ is a fixed parameter in [0, 1]. For each time t ∈ [T ], denote Wt and W̃t as the amount of used
capacity before the arrival of item t if the demand of all arrivals follows the actual distribution D
and the imaginary distribution D̃, respectively. We then choose the smallest threshold θt such that
Pr[W̃t ≤ θt] ≥ γ. Here, the probability is considered in the ex-ante sense, meaning that it does not
depend on the realization of previous arrivals. Let It be the indicator random variable which takes
value 1 if we pack item t into the bin when the demand follows D. We have:

Pr[It = 1|Wt] =

{
1 if Wt < θt,
rt if Wt = θt,
0 if Wt > θt.

Here, rt := γ−Pr[W̃t<θt]

Pr[W̃t=θt]
. We can define Ĩt conditioned on W̃t for the case that the demand follows

D̃ in a similar manner. Based on the definition of Wt and W̃t, we can compute Wt+1 and W̃t+1 by
applying the update rule Wt+1 = Wt + ItDt and W̃t+1 = W̃t + ĨtD̃t, respectively.

Analysis. We next analyze the performance guarantee of this procedure. We first consider the case
when the demand follows the imaginary distribution D̃. Note that the imaginary distribution D̃ is
known to the decision maker. Furthermore, both the threshold θt and rt are determined by D̃. Hence
we can analyze the GMP under the imaginary distribution D̃ using the same tools established in Alaei
et al. [2013]. From Theorem 2 and Theorem 6 in Alaei et al. [2013] (for arbitrary distribution),
Theorem 4 and Theorem 17 in Alaei [2014] (for Bernoulli distribution), we have the following result.

Claim 3.2. For any γ ≤ 1 − 1√
k

(γ ≤ 1 − 1√
k+3

when the demand distribution is Bernoulli

distribution), we have Pr[Ĩt] = γ and θt ≤ k − 1 for each t ∈ [T ].

We then get the conservative ratio of this procedure in the following claim. Note that θt ≤ k − 1 for
all t ∈ [T ], hence we can always pack item t into the bin successfully. As a result, Pr[It] is exactly
the allocated probability of the t-th item. Thus, we have the following claim.

Claim 3.3. The conservative ratio of modified γ-magician is mint∈[T ] Pr[Wt < θt]+rt ·Pr[Wt = θt].

Next, we show in Theorem 3.4 that if both distributions D and D̃ are Bernoulli distributions whose
value is either 0 or 1, the conservative ratio of the modified γ-magician is at least γ.

Theorem 3.4. If both the actual demand distribution D and the imaginary demand distribution D̃
are Bernoulli distributions, our procedure modified γ-magician is a γ-conservative magician of the
modified GMP for γ ≤ 1− 1√

k+3
.

We sketch the proof as follows. First, we need to show that the CDF FW̃t
of W̃t and the CDF FWt

of
Wt satisfy FW̃t

(x) ≤ FWt(x) for all x and t ∈ [T ]. For Bernoulli distributions, this can be separated
into two claims: (1) FW̃t+1

(x) ≤ FWt+1
(x) for all x < θt; (2) PrW̃t+1

[x ≤ θt] ≤ PrWt+1
[x ≤ θt]

for each t ∈ [T − 1]. Both can be shown by induction. Second, we need to compare the term
γ = Pr[Ĩt] = Pr[W̃t < θt] + rt · Pr[W̃t = θt] and the term Pr[Wt < θt] + rt · Pr[Wt = θt] for each
t ∈ [T ]. The details are referred to the appendix as mentioned earlier.
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4 Main algorithm

In this section, we formally solve the original problem by using the modified γ-magician procedure.
Algorithm 1 presents our algorithm.

Algorithm 1: GAP Algorithm
Input: Online arrivals of items
Output: A packing of online items in offline bins
Parameter: Size of sampling phase T0 ≤ T , ratio parameter γ, and error parameter ε > 0

1: for each time t ∈ [T ] do
2: item t of type vt arrives
3: if t ≤ T0 then
4: {Sampling phase}
5: reject this item, observe the demand d′t of item t
6: end if
7: if t = T0 then
8: {Estimation}
9: for each v ∈ V do

10: calculate d̄v as the average of all previous observed d′t with vt = v

11: use d̃v = d̄v + ε as the estimate of dv
12: end for
13: solve LP (d̃, T ′) where T ′ = T − T0, and get the solution x̃
14: for each v ∈ V do
15: calculate the empirical distribution Fv according to all previous arrivals whose type is v
16: define a CDF function F̃v s.t. F̃v(x) = max{0, Fv(x)− ε} for x < 1 and F̃v(x) = 1 for

x ≥ 1, and use it as the estimate of the CDF of Dv

17: end for
18: for each u ∈ U do
19: define a CDF function F̃u s.t. F̃u(x) = (1−

∑
v∈V

x̃uv
T ′ ) +

∑
v∈V

x̃uv
T ′ F̃v(x) for

x ∈ [0, 1], and use it as the CDF FD̃ in the modified GMP for bin u
20: end for
21: end if
22: if t > T0 then
23: {Magician phase}
24: choose a bin u ∈ U with probability x̃uvt

pvtT
′

25: decide whether packing item t into bin u according to the modified γ-magician procedure
for bin u, observe the demand d′t of item t

26: update W̃t in the modified γ-magician procedure for all bins
27: end if
28: end for

In our algorithm, we employ the idea of exploration-exploitation. Initially, we refrain from allocating
the first few items and instead utilize them solely to obtain estimates of the expected value and CDF
of the demand distributions. Next, we approach each bin as a modified GMP problem, utilizing
the estimates and the modified γ-magician procedure to decide the options for subsequent arrivals.
Specifically, Steps 3-6 perform the sampling phase, where we directly reject all arrivals and only
record the demand realization at Step 5. We use T0 to denote the size of the sampling phase. After the
sampling phase, we calculate our estimates in Steps 9-20. Steps 9-12 estimate the expected value of
the demand distribution. In particular, Step 11 is derived from the modification of the CDF function
at Step 16, where the updated d̃v remains an upper bound of the expected value of the distribution
F̃v , ensuring the assumption T · E[X] ≤ k made in the modified GMP holds for all bins, as stated in
Constraints (1b) of our LP. Steps 14- 17 estimate the CDF function of the demand distribution. The
modification of the CDF function at Step 16 is to ensure the assumption FD̃(x) ≤ FD(x) made in
the modified GMP holds. Finally, Steps 18-20 initialize the CDF FD̃ of the modified GMP for each
bin and Steps 22-27 make the decision according to the corresponding modified GMP.
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Analysis. We now analyze the performance guarantee of our algorithm. We first derive the following
three lemmas to get the error bound of the estimates. We fix an error parameter ε > 0 and a phase
parameter α = T0

T , where T0 denotes the size of the sampling phase. Denote N as minv∈V pvT .

Lemma 4.1. With a probability of at least 1−me−αN8 , the number of arrivals of items of each type
is at least αN2 .

We then define E as the event that the number of arrivals for items of each type is at least αN2 .

Lemma 4.2. Conditioning on E, for any δ > 0, with a probability of at least 1−me−δ2d2(αN), we
have d̃v ≤ (1 + δ + ε/d)dv for all v ∈ V .

Lemma 4.3. Conditioning on E, with a probability of at least 1− 2me−ε
2(αN), we have F̃v(x) ≤

Fv(x) for all x and v ∈ V . Here, Fv(x) is the exact CDF of the demand distribution Dv .

We can apply the union bound and Lemma A.2 to prove Lemma 4.1. Lemmas 4.2 and 4.3 can be
proved by making slight adjustments to Lemmas 2.2 and A.1. Here, the descriptions of Lemmas A.1
and A.2 are deferred to the appendix, which are some direct results from Dvoretzky et al. [1956],
Mitzenmacher and Upfal [2017].

Next we compare the optimal values of the original LP and LP (d̃, T ′) by adjusting the optimal
solution to the original LP. Here, we first disregard the probability used in Lemmas 4.2 and 4.3 and
assume the conclusions to be valid.

Lemma 4.4. The optimal value OPT′ of LP (d̃, T ′) is at least 1−α
1+δ+ε/dOPT.

Note that the optimal value of LP (d̃, T ′) is
∑
u∈U

∑
v∈V ruvx̃uv. If we have a γ′-conservative

magician for each bin, then we get the expected total reward of our algorithm to be γ′
∑
v∈V T

′pv ·
x̃uvt
pvtT

′ ruv = γ′OPT′, where the term T ′pv represents the expected arrivals of items of type v and the

term x̃uvt
pvtT

′ is the choosing probability. Hence, it suffices to show that the allocation problem for each
bin u can be reduced to a modified GMP.

Lemma 4.5. For each bin u, defining D and D̃ as described in Algorithm 1, it reduces to a modified
GMP.

By combining these lemmas, considering their probabilities, and further applying Theorem 3.4, we
can conclude the following theorem.

Theorem 4.6. Fix phase parameter α = T0

T ∈ (0, 1), error parameters ε > 0 and δ > 0. Denote N
as minv∈V pvT and k as minu∈U cu. If all demand distributions are Bernoulli distributions, with
a probability of at least 1 −me−αN8 −me−δ2d2(αN) − 2me−ε

2(αN), Algorithm 1 can achieve a
competitive ratio of 1−α

1+δ+ε/d (1− 1√
k+3

).

We first observe that the competitive ratio exhibits an increasing trend with the minimum capacity k,
which aligns with the pattern observed for the ratio derived by Alaei [2014] under known Bernoulli
demand distributions. We next analyze the change of the optimal competitive ratio and the related
parameters when N changes. Here, we fix d = 0.5 and assume α can choose an arbitrary value in
(0, 1). This assumption on α is considered mild, especially when T is not small (e.g., at least 100),
since the difference between two consecutive choices of α is sufficiently small. Hence it makes a
negligible impact even if we assume α can take any value between 0 and 1.

To compare the competitive ratio with that derived by Alaei [2014] under known Bernoulli demand
distributions, we first calculate the optimal parameters that maximize the ratio between our competitive
ratio and theirs. The ratio is given by 1−α

1+δ+ε/d according to Theorem 4.6. It is worth noting that under
the calculated optimal parameters, the probability characterized in Theorem 4.6 is always at least 0.9.
In other words, the ratio holds with a high probability. We plot the results in Figure 1, where Figure 1a
provides the optimal ratio between two competitive ratios and Figure 1b presents the corresponding
choices of parameters ε, δ and α when N varies from 1000 to 10000. According to Figure 1a, our
algorithm can achieve approximately 47% of the competitive ratio obtained under known demand
distribution even if N is only 1000 and this ratio increases with N . When N increases to 10000,
we can achieve a competitive ratio that is almost 70% of the competitive ratio derived under known
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demand distribution. Figure 1b provides a guideline in choosing parameters. Specifically, it suggests
that when N is small, we should increase our error tolerance ε and allow more explorations (a larger
α) to remain good performance.
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Figure 1: Illustration of Theorem 4.6.

5 Experiments

In this section, we perform numerical experiments1 to compare our GAP algorithm with a baseline
algorithm, which is a greedy algorithm, using synthetic datasets with various distributions. Specifi-
cally, we test Bernoulli, uniform, and truncated normal distributions for the demand to showcase the
effectiveness and efficiency of our algorithm.

Data description. We first introduce how to build an instance I of our problem. We assume the
total number of bins is n = 10, the total number of online types is m = 10, and the capacity of
each bin is set to k. The rewards, denoted by ruv , between bin u and item type v are generated from
a uniform distribution U [10, 20]. To determine the arrival probabilities, we start by generating a
number ηv for each type v from a uniform distribution U [0, 1]. We then normalize these values to
obtain the arrival probabilities pv for each type. Specifically, pv is calculated as pv = ηv∑

v∈V ηv
. For

the demand distributions, we consider three types: Bernoulli B(q), uniform U [a, b] and truncated
normal T (a, b, µ, σ2). The specific definitions and parameters for these distributions can be found
in the appendix. When testing a particular type of distribution, all online types share the same
demand distribution, but the parameters can vary. The parameter(s) of a given online type’s demand
distribution are randomly chosen (refer to the appendix for more details). Then given an instance I
and the number of online arrivals T , we generate a realization s that includes a sequence of online
items and their realized demand according to the instance I .

Algorithms. We test our GAP algorithm with γ = 1 − 1/
√
k, 0.5 or 0.8, respectively. Note that

1− 1/
√
k is the upper bound established in Claim 3.2 for general distributions. The other two tested

values can be larger than this bound. We choose these parameters to demonstrate that our algorithm
maintains good performance even when γ is beyond the bound. The baseline algorithm, which is a
greedy algorithm denoted by GRD is designed as follows. For every arrival i of type v, allocate it to
the safe offline bin u with the highest reward ruv , where “safe” refers to an offline bin that has at least
one unit of capacity available. In this section, we fix the size of the sampling phase to T0 = 100. We
only present the results for the case where ε = 0, while the results for other values of ε are provided
in the appendix. Detailed descriptions of the runtime can be also found in the appendix.

Metric. Because of the NP-hardness of the offline GAP (see Section 2.3 of Mehta et al. [2013]), we
use GRD as our benchmark rather than the offline GAP solution. For a realization s, we compute
the ratio between the reward achieved by each tested algorithm and the reward obtained by the
GRD algorithm. We refer to this ratio as the “greedy ratio”. Given k and T , we conduct experiments
using NI = 20 different instances, and for each instance, we test Ns = 5 different realizations. We
present the average greedy ratio along with the standard error across all realizations. We focus on
reporting the average greedy ratio rather than the average rewards of the tested algorithms. This is
because our main interest lies in the relative gap between our algorithms and the GRD benchmark,
and the ratio allows for a meaningful comparison that is independent of the scale of the rewards. We
refer the interested reader to the appendix for the comparison results in terms of average rewards.

1The experiment is performed by Think Book 14 G2 ITL, with processer: 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz 2.80 GHz.
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Results and discussions. The results of our numerical study are shown in Figures 2 and 3. In general,
our algorithms outperform GRD as the greedy ratio is larger than 1, except when k ≤ 4, T = 500 for
the uniform distribution and k ≤ 3, T = 500 for the truncated normal distribution. The standard error
is tolerable. We note that GAP0.8 has the best performance among all cases, despite the fact that the
value of γ may violate the condition in Theorem 3.4. This implies that in practical simulations, a
more aggressive packing strategy from our heuristics can yield better performance.

In Figure 2, we fix the initial capacity of each offline bin k = 10, and vary the number of online
arrivals T from 500 to 1000. We can see that our heuristics always outperform GRD and the greedy
ratios are increasing as T goes larger. To see it, note that T0 is fixed at 100 in our heuristics.
Consequently, when T is large, the sampling part becomes relatively small (i.e., phase parameter
α = T0

T is small but αN remains fixed). As a result, the competitive ratio of our algorithm improves,
as indicated by the competitive ratio derived in Theorem 4.6. In contrast, GRD is not affected by the
value of T , resulting in increasing greedy ratios over time.

In Figure 3, we keep the number of online arrivals fixed at T = 500 and test for different values of
k = 2, 3, · · · , 10. In the case of the Bernoulli distribution, the greedy ratios of our heuristics decrease
as k increases. This can be attributed to the fact that the reward of GRD increases with k, while the
rewards of our heuristics remain relatively stable. Notably, the greedy ratio of GAP0.8 is consistently
greater than 1 and decreases as k increases.

(a) Bernoulli distribution (b) Uniform distribution (c) Truncated normal distribution

Figure 2: k = 10, T = 500, 600, · · · , 1000.

(a) Bernoulli distribution (b) Uniform distribution (c) Truncated normal distribution

Figure 3: T = 500, k = 2, 3, · · · , 10.

To summarize, we test three heuristics based on Algorithm 1 and compare them with the greedy
benchmark over three different distributions. Our heuristics can outperform the greedy algorithm in
most cases and GAP0.8 provides the best performance among all tested cases.

6 Conclusions
In this paper, we investigate the online GAP with known i.i.d. arrivals and unknown type-specific
demand distributions. We consider a scenario where the realization of demand is revealed only
after decisions are made. We propose an algorithm that utilizes exploration-exploitation techniques
to learn the demand distributions and guide the allocation decision. Theoretically, we present a
non-asymptotic parametric guarantee when the demand distributions are Bernoulli distributions.
Numerically, we test three heuristics based on our algorithm and show the effectiveness of our
heuristics among different demand distributions.
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